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Abstract 

Bridging the gap between axiomatic Data Envelopment Analysis (DEA) and econometric Stochastic 

Frontier Analysis (SFA) has been one of the most vexing problems in the field of efficiency 

analysis. Recent developments in multivariate convex regression, particularly Convex 

Nonparametric Least Squares (CNLS) method, have led to the full integration of DEA and SFA 

into a unified framework of productivity analysis, referred to as Stochastic Nonparametric 

Envelopment of Data (StoNED). The unified framework of StoNED offers a general and flexible 

platform for efficiency analysis and related themes such as frontier estimation and production 

analysis, allowing one to combine existing tools of efficiency analysis in novel ways across the 

DEA-SFA spectrum, facilitating new opportunities for further methodological development. This 

chapter provides an updated and elaborated presentation of the CNLS and StoNED methods. This 

chapter also extends the scope of the StoNED method in several directions. Most notably, this 

chapter examines quantile estimation using StoNED and an extension of the StoNED method to the 

general case of multiple inputs and multiple outputs. This chapter also provides a detailed 

discussion of how to model heteroscedasticity in the inefficiency and noise terms.   
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1. Introduction 

Efficiency analysis is an essential and extensive research area that provides answers to such 

important questions as: Who are the best performing firms and can we learn something from their 

behavior?
 1

 What are the sources of efficiency differences across firms? Can efficiency be improved 

by government policy or better managerial practices? Are there benefits to increasing the scale of 

operations? These are examples of important questions we hope to resolve with efficiency analyses.  

Efficiency analysis is an interdisciplinary field that spans such disciplines as economics, 

econometrics,
2
 operations research and management science,

3
 and engineering, among others. The 

methods of efficiency analysis are utilized in several fields of application including agriculture, 

banking, education, environment, health care, energy, manufacturing, transportation, and utilities, 

among many others. Efficiency analysis is performed at various different scales. Micro level 

applications range from individual persons, teams, production plants and facilities to company level 

and industry level efficiency assessments. Macro level applications range from comparative 

efficiency assessments of production systems or industries across countries to efficiency assessment 

of national economies. Indeed, efficiency improvement is one of the key components of 

productivity growth (e.g., Färe et al., 1994), which in turn is the primary driver of economic 

welfare. The benefits to understanding the relationship between efficiency and productivity and 

quantifying efficiency cannot be overstated. In words of Paul Krugman (1992, p. 9), "Productivity 

isn't everything, but in the long run it is almost everything. A country's ability to improve its 

standard of living over time depends almost entirely on its ability to raise its output per worker ." 

Note that macro-level performance of a country is an aggregate of the individual firms operating 

within that country. Therefore, sound micro-foundations of efficiency analysis are critical for the 

integrity of productivity and efficiency analysis at macro level.  

Unfortunately, there currently is no commonly accepted methodology of efficiency analysis, 

but the field is divided between two competing approaches: Data envelopment Analysis (DEA) and 

Stochastic Frontier Analysis (SFA).
 4

 

Data envelopment analysis (DEA, Farrell, 1957; Charnes et al., 1978) is an axiomatic, 

mathematical programming approach to efficiency analysis. DEA’s main advantage compared to 

econometric, regression-based tools is its nonparametric treatment of the frontier, building upon 

axioms of production theory such as free disposability (monotonicity), convexity (concavity), and 

constant returns to scale (homogeneity). DEA does not assume any particular functional form for 

the frontier or the distribution of inefficiency. It’s direct, data-driven approach is helpful for 

communicating the results of efficiency analysis to decision-makers. However, the main 

shortcoming of DEA is that it attributes all deviations from the frontier to inefficiency. This is often 

a heroic assumption.  

                                                 
1
 We will henceforth use the term “firm” referring to any production unit that transforms inputs to output, including 

both non-profit and for-profit organizations. The firm can refer to an establishment (facility) or sub-division of a 

company or to an aggregate entity such as an industry, a region, or a country. 
2
 Observe that 13 of the 100 most cited articles published in a leading field journal, the Journal of Econometrics, are 

efficiency analysis papers, including Simar and Wilson (2007) that has 436 citations, making it the #32 most cited paper 

in the journal in just 6 years from its publication (citations data gathered from Scopus, Nov 25, 2013). 
3
 In operations research and management science, Charnes et al. (1978) ranks #1 as most cited article published in the 

European Journal of Operational Research (EJOR) and Banker et al. (1984) is the #1 most cited article in Management 

Science, two of the leading journals of this field (the flagship journals of EURO and INFORMS, respectively). In fact, 

Charnes et al. article has more than 5 times more citations than the 2nd most cited paper in EJOR (Nov 25, 2013). 
4 Citation statistics of some of the key papers provide undisputable evidence about the significant influence of this field. 

The four most cited papers are Charnes et al. (1978) with 6,152 citations, Banker et al. (1984) with 3,415 citations, 

Farrell (1957) with 3,296 citations, and Aigner et al. (1977) with 1,875 citations (Scopus, Nov 25, 2013).  
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Stochastic frontier analysis (SFA, Aigner, Lovell, Schmidt, 1977; Meeusen and Vanden 

Broeck, 1977) is often, incorrectly, viewed as a direct competitor of DEA. The key strength of SFA 

is its probabilistic modeling of deviations from the frontier, which are decomposed into a non-

negative inefficiency term and an idiosyncratic error term that accounts for omitted factors such as 

unobserved heterogeneity of firms and their operating environments, random errors of measurement 

and data processing, specification errors, and other sources of noise. In contrast to DEA, SFA 

utilizes parametric regression techniques, which require ex ante specifications of the functional 

forms of the frontier and the inefficiency distribution. Since the economic theory rarely justifies a 

particular functional form, flexible functional forms such as translog are frequently used. However 

flexible functional forms often violate axioms of production theory, whereas imposing the axioms 

will reduce flexibility. In summary, the DEA and SFA methods are not direct competitors but rather 

complements: in the tradeoff between DEA and SFA something is sacrificed for something to be 

gained. Namely DEA does not model noise, but is able to impose axiomatic properties and estimate 

the frontier non-parametrically, while SFA cannot impose axiomatic properties, but has the benefit 

of modeling inefficiency and noise. 

Bridging the gap between axiomatic DEA and stochastic SFA was for a long time one of the 

most vexing problems in the field of efficiency analysis. The recent works on convex nonparametric 

least squares (CNLS) by Kuosmanen (2008), Kuosmanen and Johnson (2010), and Kuosmanen and 

Kortelainen (2012) have led to the full integration of DEA and SFA into a unified framework of 

productivity analysis, which we refer to as stochastic nonparametric envelopment of data 

(StoNED).
5
 

We see the development of StoNED as a paradigm shift for efficiency analysis. It is no longer 

necessary to decide if modeling noise is more important than imposing axioms of production 

theory: we can do both using StoNED. The unified framework of StoNED offers deeper insights to 

the foundations of DEA and SFA, but it also provides a more general and flexible platform for 

efficiency analysis and related themes such as frontier estimation and production analysis. Further, 

a number of extensions to the original DEA and SFA methods have been developed over the past 

decades. The unified StoNED framework allows us to combine the existing tools of efficiency 

analysis in novel ways across the DEA-SFA spectrum, facilitating new opportunities for further 

methodological development. 

The main objective of this chapter is to provide an updated and elaborated presentation of the 

CNLS and StoNED methods, the most promising new tools for axiomatic nonparametric frontier 

estimation and efficiency analysis under stochastic noise. Our secondary objective is to extend the 

scope of the StoNED method in several dimensions. This chapter provides the first extension of the 

StoNED method to the general case of multiple inputs and multiple outputs. We also consider 

quantile estimation using StoNED, and present a detailed discussion of how to model 

heteroscedasticity in the inefficiency and noise terms.   

The rest of this chapter is organized as follows. Section 2 introduces the unified StoNED 

framework and its special cases by reviewing alternative sets of assumptions that motivate different 

estimation methods applied in productivity analysis. Our focus is explicitly on the axiomatic DEA-

style approaches. Section 3 presents the CNLS regression as a quadratic programming problem. 

Section 4 discusses the intimate connections between CNLS and DEA, and introduces a step-wise 

C
2
NLS estimator. Section 5 further develops the step-wise estimation approach for the StoNED 

                                                 
5
 The term StoNED was coined by Kuosmanen (2006). By request of referees, Kuosmanen and Kortelainen (2012) used 

the term stochastic “non-smooth” envelopment, as their model specification involves parametric distributional 

assumptions. In this chapter we show that the distributional assumptions can be relaxed: see Sections 5.2.3 and 6.2. 
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estimator. Section 6 reviews some important extensions to the StoNED, including the multiplicative 

formulation (Section 6.1), observations from multiple time periods that make up a panel data 

(Section 6.2), directional distance functions (DDF) for modeling multiple output variables (Section 

6.3), and quantile regression formulation (Section 6.4). The model of contextual variables that 

represent operational conditions or practices is examined in detail in Section 7. Testing of 

heteroscedasticity and modeling heteroscedasticity of inefficiency and noise using a doubly-

heteroscedastic model discussed in Section 8. Finally, Section 9 concludes with discussion of some 

promising avenues of future research.  

     

2. Unified frontier model  

To maintain direct contact with the SFA literature, we introduce the unified model of frontier 

production function in the multiple input, single output case. Multiple outputs can be modeled using 

cost functions (see Kortelainen and Kuosmanen, 2012, Section 4.4; and Kuosmanen, 2012) and 

distance functions. A general multi-input multi-output directional distance function model will be 

introduced in Section 6.3.  

Production technology is represented by a frontier production function f(x), where x is a m-

dimensional input vector.
 6
 Frontier f(x) indicates the maximum output that can be produced with 

inputs x, and hence the function f(x) characterizes the boundary of the production possibility set. 

We assume that function f belongs to the class of continuous, monotonic increasing, and globally 

concave functions that can be non-differentiable (we denote this class as 
2F ). This is equivalent to 

stating that the production possibility set satisfies the classic DEA assumptions of free disposability 

and convexity. In contrast to SFA, no specific functional form for f is assumed.  

The observed output 
iy  of firm i may differ from ( )if x  due to inefficiency and noise. We 

follow the SFA literature and introduce a composite error term 
i i iv u   , which consists of the 

inefficiency term 0iu   and the stochastic noise term 
iv , formally,  

( )

( ) ,   1,...,

i i i

i i i

y f

f u v i n

 

   

x

x
      (1) 

Variables 
iu  and 

iv  ( 1,...,i n ) are random variables that are assumed to be statistically 

independent of each other as well as of inputs 
ix . We assume that the inefficiency term has a 

positive mean and a constant finite variance, that is, ( ) 0iE u    and 2( )i uVar u   . We further 

assume zero mean noise with a constant finite variance, that is, ( ) 0iE v   and 2( )i vVar v   . 

Assuming 2

u  and 2

v  are constant across firms is referred to as homoscedasticity; models with 

heteroskedastic inefficiency and noise will be discussed in Section 8. For the sake of generality and 

to maintain the fully nonparametric orientation, we do not introduce any distributional assumptions 

for 
iu  or 

iv  at this point. However, some estimation techniques to be introduced below require 

additional parametric assumptions.  

In model (1), the deterministic part (i.e., production function f) is defined analogous to the 

DEA literature, while the stochastic part (i.e., composite error term i ) is defined similar to SFA. 

As a result, model (1) encompasses the classic models of the SFA and DEA literature as its 

constrained special cases. Note that in this chapter we use the term “model” in the sense of the 

                                                 
6
 For clarity, we denote vectors by bold lower case letters (e.g., x) and matrices by bold capital letters (e.g., Z). All 

vectors are column vectors, unless otherwise indicated. Note: x  denotes the transpose of vector x.  
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econometric literature to refer to the description of the data generating process (DGP). DEA and 

SFA are alternative estimators or methods for estimating the production function f, the expected 

inefficiency  , and the firm-specific realizations of the random inefficiency term ui. We note that 

in the DEA literature it is common to use the term “model” for the linear programming problem 

(e.g., LP model) or other mathematical programming formulations for computing the estimator. To 

avoid confusion, we will follow the econometric terminology and refer to equation (1) and the 

related assumptions as the model, whereas DEA, SFA, CNLS, and StoNED are referred to as 

estimators. In this terminology, “DEA model” or “SFA model” refer to the specific assumptions 

regarding the variables of model (1). 

The literature of efficiency analysis has conventionally focused on fully parametric or 

nonparametric versions of model (1). Parametric models postulate a priori a specific functional form 

for f (e.g., Cobb-Douglas, translog, etc.) and subsequently estimate its unknown parameters. In 

contrast, axiomatic nonparametric models assume that f satisfies certain regularity axioms (e.g., 

monotonicity and concavity), but no particular functional form is assumed. At this point, we must 

emphasize that the term nonparametric does not necessarily imply that there are no restrictive 

assumptions. It is not true that the assumptions of a nonparametric model are necessarily less 

restrictive than those of a parametric model. For example, the fully nonparametric DEA estimator of 

model (1) is based on the assumption of no noise (i.e., vi = 0 for all firms i). Assuming away noise 

does not require any specific parametric specification, but it is nevertheless a restrictive assumption. 

In fact, it is less restrictive to impose parametric structure and assume vi are identically and 

independently distributed according to the normal distribution 2(0, )vN  . Note that this parametric 

specification contains the fully nonparametric “deterministic” case of no noise as its restricted 

special case, obtained by imposing the parameter restriction 2 0v  . 

In addition to the pure parametric and nonparametric alternatives, the intermediate cases of 

semiparametric and semi-nonparametric models have become increasingly popular in recent years. 

However, the exact meaning of this terminology is often confused. Chen (2007) provides an 

intuitive and useful definition that we find worth quoting:  

 

“An econometric model is termed “parametric” if all of its parameters are in finite dimensional 

parameter spaces; a model is “nonparametric” if all of its parameters are in infinite-dimensional 

parameter spaces; a model is “semiparametric” if its parameters of interests are in finite-

dimensional spaces but its nuisance parameters are in infinite-dimensional spaces; a model is “semi-

nonparametric” if it contains both finite-dimensional and infinite-dimensional unknown parameters 

of interests”. Chen (2007), p. 5552, footnote 1. 

 

Note that according to the above definition both the semiparametric and semi-nonparametric model 

contain a nonparametric part and a parametric part. The distinction between the terms 

semiparametric and semi-nonparametric is subjective, dependent on whether we are interested in 

the empirical estimates of the nonparametric part or not. The same model can be either 

semiparametric, if our main interest is in the parameter estimates of the parametric part and the 

nonparametric part is of no particular interest, or semi-nonparametric, if we are interested in the 

results of the nonparametric part.  

Model (1) can be interpreted as a neoclassical or frontier model depending on the 

interpretation of the disturbance term (cf., Kuosmanen and Fosgerau, 2009). The neoclassical model 

assumes that all firms are efficient and disturbances are random, uncorrelated noise terms. Frontier 
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models typically assume that all or some part of the deviations from the frontier are attributed to 

systematic inefficiency.  

Table 1 combines the criteria described above to identify six alternative estimation methods 

commonly used for estimating the variants of the unified model (1), together with some canonical 

references. On the parametric side, OLS refers to ordinary least squares, PP means parametric 

programming, COLS is corrected ordinary least squares, and SFA is stochastic frontier analysis 

(see, e.g., Kumbhakar and Lovell, 2000, for an introduction to the parametric approach to efficiency 

analysis). The focus of this chapter is on the axiomatic nonparametric and semi-nonparametric 

variants of model (1): CNLS refers to convex nonparametric least squares (Section 3), DEA is data 

envelopment analysis (Section 4.1), C
2
NLS is corrected convex non-parametric least squares 

(Section 4.2), and StoNED is stochastic nonparametric envelopment of data (Section 5).  

 

Table 1. Classification of methods 

  Parametric Nonparametric  

 

Central tendency 

OLS 

Cobb and Douglas (1928) 

CNLS (Section 3) 

Hildreth (1954) 

Hanson and Pledger (1976) 

 

 

 

 

 

Deterministic 

frontier  

Sign 

constraints 

PP 

Aigner and Chu (1968)  

Timmer (1971)  

 

DEA (Section 4.1) 

Farrell (1957)  

Charnes et al. (1978)  

 

2-step 

estimation 

COLS 

Winsten (1957)  

Greene (1980)  

 

C
2
NLS (Section 4.2) 

Kuosmanen and Johnson (2010)  

Stochastic frontier 

SFA 

Aigner et al. (1977)  

Meeusen and Vanden Broeck 

(1977)  

StoNED (Section 5) 

Kuosmanen and Kortelainen 

(2012)  
 

 

3. Convex nonparametric least squares 

In this section we consider the special case of model (1) where the composite error term ε consists 

exclusively of noise v, and there is no inefficiency (i.e., we assume u = 0). This special case is 

relevant for modeling firms that operate in the competitive market environment, which meets (at 

least by approximation) the conditions of perfect competition considered in microeconomic theory. 

We will relax this no inefficiency assumption from Section 4 onwards, but the insights gained in 

this section will be critical for understanding the developments in the following sections.  

In the case of a symmetric zero-mean error term that satisfies E(εi) = 0 for all i, the expected 

value of output conditional on inputs equals the value of the production function, that is, 

( ) ( ( )) ( ) ( )i i i i iE y E f E f  x x x .  

Therefore, in this setting the production function f can be estimated by nonparametric regression 

techniques. Note that the term “regression” refers to the conditional mean ( )i iE y x .  

 Hildreth (1954) was the first to consider nonparametric regression subject to monotonicity 

and concavity constraints in the case of a single input variable x (see also Hanson and Pledger, 
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1976). Kuosmanen (2008) extended Hidreth’s approach to the multivariate setting with a vector-

valued x, and coined the term convex nonparametric least squares (CNLS) for this method. CNLS 

builds upon the assumption that the true but unknown production function f belongs to the set of 

continuous, monotonic increasing and globally concave functions, 
2F , imposing exactly the same 

production axioms as standard DEA.   

The CNLS estimator of function f is obtained as the optimal solution to the infinite 

dimensional least squares problem  

2

1

2

min ( ( ))  

subject to 

n

i i
f

i

y f

f F







 x

     (2) 

The functional form of f is not specified beforehand. Rather, the optimal solution will identify the 

best-fit function f from the family 
2F . Note that set 

2F  includes an infinite number of functions, 

which makes problem (2) impossible to solve through brute force trial and error. Further, problem 

(2) does not generally have a unique solution for any arbitrary input vector x, but a unique solution 

exists for estimating f for the observed data points ( , ),  1,...,i iy i nx . Therefore, we will next 

discuss the estimation of f for the observed data points and extrapolation to unobserved points in 

sub-section 3.2. 

 

3.1 CNLS estimator for the observed data points 

A unique solution to problem (2) for the observed data points ( , ),  1,...,i iy i nx , can be found by 

solving the following finite dimensional quadratic programming (QP) problem 

2

, ,
1

min ( )

subject to

 

 ,

0 

n
CNLS

i

i

CNLS

i i i i i

i i i h h i

i

y i

h i

i



 

 



   

    

 


α β ε

β x

β x β x

β

     (3) 

where i  and iβ  define the intercept and slope parameters of tangent hyperplanes that characterize 

the estimated piece-wise linear frontier (note that 1 1 2 2 ...i i i i i i im imx x x      β x ). Symbol CNLS

i  

denotes the CNLS residual, which is an estimator of the true but unobserved 
i iv  . Note that in (3) 

the Greek letters are variables and the Latin letters are parameters (i.e., (xi, yi) are observed data).  

Kuosmanen (2008) introduced the QP formulation (3), and proved its equivalence with the 

infinite dimensional optimization problem (2). Specifically, if we denote the value of the objective 

function in the optimal solution to the infinite dimensional CNLS formulation (2) by CNLSSSE  (SSE 

= the sum of squares of errors), and that of the finite QP problem (3) by QPSSE , then the 

equivalence can be stated as follows.  

 

Theorem 1: 
CNLS QPSSE SSE .  

 

Proof. See Kuosmanen (2008), Theorem 2.1. 
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The equivalence result does not restrict to the objective functions, the optimal solution to 

problem (3) also provides us unique estimates of function f for the observed data points. Once the 

optimal solution is found, we will add “hats” on top of ˆ
i , ˆ

iβ , and ˆCNLS

i , and refer to them as 

estimators.
7
 In other words, i , iβ , and CNLS

i  are variables of problem (3), whereas estimators ˆ
i , 

ˆ
iβ , and ˆCNLS

i  provide the optimal solution to problem (3). Given ˆ
i  and ˆ

iβ  from (3), we define  

ˆ ˆˆ ˆ( )CNLS CNLS

i i i i i if y    x β x .     (4) 

This estimator of function f satisfies the following properties: 

 

Theorem 2: In the case of the neoclassical model with no inefficiency, ˆ ( )CNLS

if x  is a unique, 

unbiased and consistent estimator of ( )if x  for the observed data points ( , ),  1,...,i iy i nx . 

 

Proof. Uniqueness is proved by Lim and Glynn (2012), Proposition 1. Unbiasedness follows from 

Seijo and Sen (2011), Lemma 2.4. Consistency is proved under slightly different assumptions in 

Seijo and Sen (2011), Theorems 3.1 and 3.2, and Lim and Glynn (2012), Theorems 1 and 2. 

 

The constraints of the QP problem (3) have the following compelling interpretations.
8
 The 

first constraint of the least squares formulation (3) is a linear regression equation. However, the 

CNLS regression does not assume linear f: note that coefficients i  and iβ  are specific to each 

observation i. Using the terminology of DEA, i  and iβ  are directly analogous to the multiplier 

coefficients of the dual formulation of DEA. The inequality constraints in (3) can be interpreted as a 

system of Afriat inequalities (compare with Afriat, 1967, 1972; and Varian, 1984). As Kuosmanen 

(2008) emphasizes, the Afriat inequalities are the key to modeling the concavity axiom in the 

general multiple regression setting. 

Coefficients i  and iβ  should not be misinterpreted as parameters of the estimated function f, 

but rather, as parameters characterizing tangent hyperplanes to an unknown production function f. 

These coefficients characterize a convex piece-wise linear function, to be examined in more detail 

the next sub-section. At this point, we must emphasize that we did not assume or restrict the domain 

2F  to only include piece-wise linear function. In fact, it turns out that the “optimal” functional form 

to solving the infinite dimensional least squares problem (2) is always a convex piece-wise linear 

function characterized by coefficients i  and iβ . However, this optimal solution is unique only for 

the observed data points.  

 

3.2 Extrapolating to unobserved points 

In many applications we are interested in estimating the frontier not only for the observed data 

points, but also for unobserved input vectors x. Although the CNLS estimator is unique for the 

observed data points, there is no unique way of extrapolating the CNLS estimator to unobserved 

points. In general, the optimal solution to the infinite dimensional least squares problem (2) is not 

unique, but there exists a set of functions 
*

2f F  that solve the optimization problem (2). 

Formally, we denote the set of alternate optima to (2) as 

                                                 
7
 In application, when estimators are calculated for a specific data set we will refer to these as estimated parameters.  

8
 Note is formulation is written for ease of interpretation.  Other formulations might be preferred to improve 

computational performance.  
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2

* * 2

2

1

arg min ( ( ))
n

i i
f F

i

F f f y f




 
   
 

 x .  

Kuosmanen (2008) characterizes the minimum and maximum bounds for the functions 
*

2f F . It turns out that both bounds are piece-wise linear functions. However, only the minimum 

bound satisfies the postulated monotonicity and concavity properties. To resolve the non-

uniqueness issue, Kuosmanen and Kortelainen (2012) appeal to the minimum extrapolation 

principle and propose to use the lower bound 

 min
,

ˆ ˆ( ) min ( ) 1,...,CNLS CNLS

i if f i n


       
β

x β x β x x    (5) 

Note that the lower bound 
min
ˆ CNLSf  is simply the DEA estimator (single output, variable returns to 

scale) applied to the observed inputs xi and the fitted outputs ˆ ( )CNLS

if x  obtained from equation (4).
9
 

The lower bound function satisfies the postulated properties of monotonicity and concavity. We can 

make the following connection between the lower bound (5) and the infinite dimensional CNLS 

problem (2).  

 

Theorem 3: Function 
min
ˆ CNLSf  stated in equation (5) is one of the optimal solutions to the infinite 

dimensional optimization problem (2). It is the unique lower bound for the functions that solve 

problem (2), formally   

min
ˆ ( ) ( )CNLSf f x x  for all 

m

x  and 
*

2f F . 

 

Proof. See Kuosmanen (2008) Theorem 4.1.  

 

Note that while ˆ CNLSf  is unbiased and consistent for the observed points xi (Theorem 3), the 

use of the piece-wise linear minimum function min
ˆ CNLSf  will cause downward bias in finite samples as 

we apply the minimum extrapolation principle to extrapolate to unobserved points x. Within the 

observed range of data, the downward bias will diminish as the sample size increases. 

It is also worth noting that the optimal solution to the QP problem (3) does not necessarily 

produce unique coefficients ˆ
i  and ˆ

iβ . Although min
ˆ CNLSf  is a unique lower bound, consistent with 

the minimum extrapolation principle, the coefficients ˆ
i  and ˆ

iβ  obtained as the optimal solution to 

(5) need not be unique either. It is well-known in the DEA literature that these multiplier 

coefficients are not unique in the vertices of the piece-wise linear function.  

  

3.4 Computational issues 

The CNLS problem (3) has linear constraints and a quadratic objective function, hence it can be 

solved by QCP solvers such as CPLEX or MOSEK.
10

 Standard solvers work well in relatively small 

sample sizes (50 – 200 firms) available in the majority of published applications of efficiency 

analysis. However, since the number of Afriat inequalities in (3) grows at a quadratic rate as a 

function of the number of observations, the computational burden becomes a significant issue when 

the sample size increases beyond 300 firms. Note that adding a new firm to the sample increases the 

                                                 
9
 In addition to the use of DEA to identify the lower bound function, there is a more fundamental connection between 

CNLS and DEA, to be explored in Section 4. 
10

 Examples of computational codes for GAMS are available on the StoNED website: www.nomepre.net/stoned/.  

http://www.nomepre.net/stoned/
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number of unknown parameters by m+2, and the number of Afriat inequality constraints increases 

by 2n. Introducing an additional input variable increases the number of unknown parameters by n, 

but there is no impact on the number of constraints. For these reasons, standard QP algorithms are 

inadequate for handling large samples with several hundreds or thousands of observations. 

As a first step towards improving computational performance in small samples and to allow 

for larger problems to be solved, Lee et al. (2013) propose to follow the strategy of Dantzig et al. 

(1954, 1959) to iteratively identify and add violated constraints. The algorithm developed by Lee et 

al. first solves a relaxed CNLS problem containing an initial set of constraints, those that are likely 

to be binding, and then iteratively adds a subset of the violated concavity constraints until a solution 

that does not violate any constraint is found. In computational experiments, this algorithm allowed 

problems with up to 1,000 firms to be solved. Therefore, this algorithm has practical value 

especially in large sample applications and simulation-based methods such as bootstrapping or 

Monte Carlo studies. Another recent study by Hannah and Dunson (2013) implements CNLS in 

Matlab, reporting promising results. However, further algorithm development is needed to make the 

CNLS problem computable in very large sample sizes containing several thousands or millions of 

observations.  

 

4. Deterministic frontiers 

In this section we consider another special case of model (1) where the composite error term ε 

consists exclusively of inefficiency u, and there is no noise (i.e., v = 0). In the SFA literature, this 

special case is commonly referred to as the deterministic model. This does not imply, however, that 

probabilistic inferences are impossible.  

Banker (1993) was the first to show that DEA can be understood as a maximum likelihood 

estimator of the deterministic model, with a statistical (probabilistic) foundation. However, the 

known statistical properties and inferences in the DEA literature restrict to the finite sample error 

that generally diminishes as the sample size increases. Or stated differently, the model specification 

and input and output data in the deterministic model are assumed to be exact and correct, so the 

only probabilistic component is the random sample of observations drawn from the production 

possibility set. This same deterministic model and its associated statistical foundation are used for 

inference in the bootstrapping methods (e.g., Simar and Wilson, 1998; 2000). Thus, statistical 

inference and confidence intervals estimated using bootstrapping methods only account for 

uncertainty in sampling and do not account for other sources of random variation or noise. Thus, 

bootstrap confidence intervals of DEA are not directly comparable to confidence intervals of other 

models that are genuinely stochastic in their nature (e.g., the SFA confidence intervals).  

It is important to recognize that if the no noise assumption (v = 0) of the deterministic model 

does not hold, the statistical foundations of DEA collapse. The bootstrapping methods to adjust for 

the small sample are not a remedy against noise, rather adjusting for the sampling bias can make the 

DEA estimator worse if data are perturbed by noise. The stochastic case that includes both 

inefficiency and noise simultaneously will be considered in Section 5. The purpose of this section is 

to establish some useful connections between the ‘neoclassical’ CNLS and the ‘deterministic’ DEA 

to develop a unified framework and pave the way for a stochastic nonparametric StoNED estimator.  

 

4.1 DEA as sign-constrained CNLS 

In the single-output case, the variable returns to scale (VRS) DEA estimator of production function 

f can be stated as  
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 
,

1 1 1

ˆ ( ) min  1,...,

max ; 1

DEA

i i

n n n

h h h h h

h h h

f y i n

y


 

  
  

      

 
   

 
  

β

λ

x β x β x

x x

     (6) 

Note the difference between formulations (5) and (6): the former one uses the estimated output 

values ˆ ( )CNLS

if x  , whereas in the latter one uses the observed outputs yi. Otherwise the 

formulations (5) and (6) are equivalent. The minimization formulation in (6) can be interpreted as 

the DEA multiplier formulation, whereas the maximization formulation of (6) is known as the DEA 

envelopment formulation. The duality theory of linear programming implies that the two 

formulations are equivalent. 

Consider next a version of the CNLS estimator with an additional sign constraint on the 

residuals 

 

2

, ,
1

min ( )

subject to

 

 ,

0 

0 

n
CNLS

i

i

CNLS

i i i i i

i i i h h i

i

CNLS

i

y i

h i

i

i



 

 











   

    

 

 


α β ε

β x

β x β x

β

     (7) 

Comparing (3) and (6), we see that the only difference is the last constraint of (7), which is not 

present in the original CNLS formulation. Due to the sign constraint, Kuosmanen and Johnson 

(2010) interpret (6) as an axiomatic, nonparametric counterpart to the classic parametric 

programming approach of Aigner and Chu (1968).  

We now establish the formal connection between CNLS and DEA as follows. Let min
ˆ ( )CNLSf 

x  

denote the piece-wise linear function obtained by applying equation (5) to the observed inputs ix  

and the fitted values ˆ
iy of the sign-constrained formulation (7).  

 

Theorem 4: The sign-constrained CNLS estimator is equivalent to the DEA VRS estimator:  

min
ˆ ˆ( ) ( )CNLS DEAf f x x  

 

Proof. Follows directly from Theorem 3.1 in Kuosmanen and Johnson (2010). 

 

Although Theorem 4 was stated in the VRS case, the equivalence of DEA and sign-

constrained CNLS does not restrict to the VRS case. Indeed parallel results are available for the 

other standard specifications of returns to scale by imposing additional constraints on the 

coefficients ˆ
i  in formulations (3) or (7) as follows:  

 

Constant returns to scale (CRS): impose ˆ 0  i i    

Non-increasing returns to scale (NIRS): impose ˆ 0  i i     

Non-decreasing returns to scale (NDRS): impose ˆ 0  i i     
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Similarly, if the convexity assumption of DEA is relaxed the free disposable hull (FDH), Afriat 

(1972), estimator provides the minimum envelopment of data subject to free disposability. Keshvari 

and Kuosmanen (2013) show that the FDH formulation is a sign-constrained special case of isotonic 

nonparametric least squares (INLS), which in turn is the concavity relaxed version of CNLS. 

From a practical point of view, the least squares interpretation of DEA opens up new avenues 

for applying tools from econometrics to DEA. For example, Kuosmanen and Johnson (2010) 

propose to measure the goodness-of-fit of DEA estimator by using the standard coefficient of 

determination from regression analysis, specifically 

 

 

2

2 1

2

1

ˆ
n

ii

n

ii

y y
R

y y













.         (8) 

 Where 
1

1 n

i

i

y y
n 

   is the average output in the sample. The R
2
 statistic measures the proportion of 

output variation that is explained by the DEA frontier. While this variance decomposition can be 

applied to any regression model (including DEA), we note that DEA does not maximize the value 

of R
2
 and hence negative R

2
 values are possible for DEA estimators. This variance decomposition 

assumes a single output, however, one could compute and report separate R
2
 statistics for each 

output.  

 

4.2 Corrected CNLS 

DEA builds on the minimum extrapolation principle to estimate the smallest function that envelops 

all data points. From the statistical point of view, insisting on the minimum extrapolation results in 

a systematic downward bias (i.e., the small sample error of DEA). For the deterministic model, 

Kuosmanen and Johnson (2010) show that a consistent and asymptotically unbiased estimator is 

obtained by applying a nonparametric variant of the classic COLS estimator. The proposed 

corrected convex nonparametric least squares (C
2
NLS) estimator has always better discriminating 

power than DEA: the C
2
NLS frontier envelops the DEA frontier everywhere, and the probability of 

finding multiple efficient units in randomly generated data approaches zero.  

The C
2
NLS method combines the nonparametric CNLS regression with the stepwise COLS 

approach first suggested by Winsten (1957), and more formally developed by Gabrielsen (1975) 

and Greene (1980). In this approach the most efficient firm in the sample is considered to be fully 

efficient, and the remaining inefficiency terms are normalized accordingly relative to the most 

efficient firm in the sample. A widely used panel data approach by Schmidt and Sickles (1984) 

applies a similar two-step approach (see Section 6.2 for details).  

The essential steps of the C
2
NLS routine can be described as follows: 

 

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output ( )i iE y x . 

 

Step 2: Identify the most efficient unit in the sample (i.e., 
 

2

1,...,

ˆˆ maxC NLS CNLS

benchmark h
h n

u 


 ) as the benchmark. 

Adjust the CNLS residuals according to 
 

2

1,...,
ˆ ˆˆ ( max )C NLS CNLS CNLS

i h i
h n

u  


  . 

 

Step 3: Apply equation (5) to estimate the minimum function min
ˆ ( )CNLSf x . Adjust the minimum 

function by adding the residual of the benchmark firm to estimate the frontier using  
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2 2

min
ˆ ˆ ˆ( ) ( )C NLS CNLS C NLS

benchmarkf f u x x  

 

Thus obtained 
2ˆC NLS

iu  can be used as measures of inefficiency in the deterministic setting 

without noise. The most appealing properties of the C
2
NLS estimator can be summarized as 

follows: 

 

Theorem 5: if 0v  , then the C
2
NLS estimator is statistically consistent:  

C2NLSˆplim ( ) ( )i i
n

f f


x x
 
for all i = 1,…,n. 

 

Proof. Follows from Theorem 4.1 in Kuosmanen and Johnson (2010). 

 

Theorem 6: the C
2
NLS frontier envelops the DEA frontier, that is,    

2ˆ ˆ( ) ( ) C NLS DEA mf f   x x x . 

 

Proof. Follows from Theorem 4.2 in Kuosmanen and Johnson (2010). 

 

Note that the inefficiency estimates 
2ˆC NLS

iu  are non-negative by construction, with the value of 

zero indicating full efficiency. The inefficiency measures can be converted to Farrell (1957) output 

efficiency scores (
2ˆ [0,1]C NLS

i  ) by using  

2

22

ˆ
ˆ ˆ( )

C NLS i i
i C NLSC NLS

i ii

y y

y uf
  

x .
        (9) 

 

5. Stochastic Nonparametric Envelopment of Data (StoNED) 

We are now equipped to consider the general stochastic nonparametric model that does not restrict 

to any particular functional form of f and includes both inefficiency u and stochastic noise v. Before 

proceeding to estimation, we must emphasize that the shift from the deterministic case to a 

stochastic model is rather dramatic. For example, measuring the distance from an observed point to 

the frontier does not provide a measure of inefficiency if the observed point is perturbed by noise. 

While probabilistic inference in the deterministic case only investigates finite sample error, in the 

stochastic model the noise term is still relevant even if the sample size approaches infinity. Clearly, 

when all data points are subject to noise enveloping all observations would overestimate the true 

frontier production function. The CNLS regression that fits a monotonic increasing and concave 

curve through the middle of the cloud of data provides a natural starting point for the next 

generation of DEA that can deal with noise.
11

 Following Kuosmanen (2006), we refer to this 

approach as stochastic nonparametric envelopment of data (StoNED).  

                                                 
11

 Banker and Maindiratta (1992) consider maximum likelihood estimation of the unified frontier model subject to 

monotonicy and concavity constraints. However, their maximum likelihood problem appears to be computationally 

prohibitive. We are not aware of any application of this method. Gstach (1998) presents another early attempt to 

incorporate noise in DEA. However, he needs to make a rather restrictive assumption of truncated noise (see Simar and 

Wilson, 2011, for sharp critique of this assumption).   
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Analogous to the parametric COLS and MOLS (modified OLS) estimators and the 

nonparametric C
2
NLS, the StoNED estimator consists of multiple steps. The main steps can be 

described as follows (a detailed description of each step follows below): 

 

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output ( )i iE y x . 

Step 2: Apply parametric methods (e.g., the method of moments or quasi-likelihood estimation) or 

nonparametric methods (e.g., kernel deconvolution) to the CNLS residuals 
CNLS

i  to estimate the 

expected value of inefficiency  .  

Step 3: Apply equation (5) to estimate the minimum function min
ˆ ( )CNLSg x . Adjust the minimum 

function by adding the expected inefficiency   to estimate the frontier using  

min
ˆ ˆ ˆ( ) ( )StoNED CNLSf g  x x  

Step 4: Apply parametric methods (see e.g., Jondrow, Lovell, Materov and Schmidt, 1982, JLMS 

hereafter) or nonparametric deconvolution (e.g., kernel smoothing, Horrace and Parmeter, 2011) to 

estimate firm-specific inefficiency using the conditional mean ( )CNLS

i iE u  . 

 

We will next describe each step in detail, noting that each step provides alternative modeling 

choices (depending on the assumptions one is willing to impose), and that it is not necessary to go 

through all of the steps. We discuss the information available at the end of each step and the 

possible motivations for proceeding to further steps.  

 

5.1 Step 1: CNLS regression  

The CNLS estimator was described in detail in Section 3 under the assumption of no inefficiency (u 

= 0). If the observed outputs are subject to asymmetric inefficiency, as the general frontier model 

(1) assumes, then the zero-mean assumption ( ) 0iE    of regression analysis is violated. Indeed, 

( ) ( ) ( ) 0i i i iE E v u E u       due to the asymmetric non-negative inefficiency term. Therefore, 

the CNLS estimator is no longer a consistent estimator of the frontier production function f.  

Recall that CNLS regression estimates the conditional mean. Therefore, define the conditional 

mean function g as
12

  

( ) ( ) ( ) ( )i i i i ig E y f E u  x x x .         (10) 

If the random inefficiency term u is independent of inputs x, then the CNLS estimator ˆ ( )CNLS

ig x   is 

an unbiased and consistent estimator of function g. The CNLS estimator ˆ ( )CNLS

ig x  is obtained by 

solving the QP problem (3) and applying equation (4), as already discussed in Section 3, so we do 

not reproduce the CNLS formulations again here. Note that function g is simply the frontier 

production function f less the expected value of the inefficiency term u. If the inefficiency term u 

has a constant variance (i.e., inefficiency term u is homoscedastic), then the expected value of the 

inefficiency term u is a constant, denoted as  . In other words, the CNLS provides a consistent 

estimator of the frontier f minus a constant. The constant   can be estimated based on the CNLS 

residuals ˆCNLS

i , as discussed in more detail in Section 5.2. The case of heteroscedastic inefficiency 

where ( )iE u  is no longer a constant will be examined in Section 8. 

                                                 
12

 Note that we use g to denote the conditional mean function when the composite error term contains inefficiency. This 

distinction was unnecessary in Section 3 because g(x) = f(x) when there is no inefficiency present.  
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Even if the data generating process (DGP) involves both inefficiency and noise, the CNLS 

estimator may be sufficient in some applications, without a need to proceed to the further stages. 

For example, if one is mainly interested in the relative efficiency rankings, then one could rank the 

evaluated units in descending order according to the CNLS residuals ˆCNLS

i . Further, if one is 

mainly interested in the marginal products of the input factors, the coefficients ˆ
iβ  from (3), which 

are analogous to the multiplier coefficients (shadow prices) of DEA, then the CNLS regression 

provides consistent estimates (Seijo and Sen, 2011). The following steps described below do not 

influence the estimates of marginal products or the relative efficiency ranking of units. If one is 

interested in the frontier production function, average (in)efficiency in the sample, or cardinal firm-

specific (in)efficiency estimates, then it is necessary to proceed further.   

In the first step, one can impose some assumptions about returns to scale as described in 

Section 4.1. In addition, alternative modeling possibilities concern the multiplicative composite 

error and contextual variables are discussed as extensions in Section 6 and 7.  

 

5.2 Step 2: Estimation of the expected inefficiency 

Given the CNLS residuals ˆCNLS

i , it is possible to estimate the expected value of the inefficiency 

term ( )iE u  . Note that if the variance of the inefficiency is constant across firms (the 

homoscedasticity assumption), then the expectation is taken unconditional and is constant across 

firms.  

Alternative approaches for estimating   are available. We will next briefly review the 

commonly used parametric approaches based on the method of moments (Aigner et al., 1977), 

quasi-likelihood estimation (Fan et al., 1996), and the nonparametric kernel deconvolution (Hall 

and Simar, 2002). 

 

5.2.1 Method of moments 

The method of moments requires some additional parametric distributional assumptions. The 

moment conditions are known at least for the commonly used half-normal and exponential 

inefficiency distributions, but not for all distributions considered in the SFA literature (e.g., the 

gamma distribution). In the following, we will discuss the commonly assumed case of half-normal 

inefficiency and normal noise. Stated formally, we assume 
2~ (0, )i uu N 

 

and  
2~ (0, )i vv N   

The CNLS residuals are known to sum to zero 
1

ˆ 0
n

CNLS

i

i




  (Seijo and Sen, 2011). Hence, we 

can calculate the second and the third central moment of the residual distribution as  

2

2

1

ˆ ˆ( ) / ( 1)
n

CNLS

i

i

M n


        (11) 

3

3

1

ˆ ˆ( ) / ( 1)
n

CNLS

i

i

M n


  .     (12) 

The second central moment 2M̂  is simply the sample variance of the residuals and the third central 

moment 3M̂  is a component of the skewness measure. The hats on top of these statistics indicate 

these statistics are estimators of the true but unknown values of the central moments. If the 
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parametric assumptions of half-normal inefficiency and normal noise hold, then the second and the 

third central moments are equal to 

2 2

2

2
u vM


 



 
  
 

      (13) 

3

3

2 4
1 uM 

 

   
        

     (14) 

Note that the third moment only depends on the standard deviation of the inefficiency distribution   

( u ). Thus, given the estimated 
3M̂  (which should be negative), we can estimate u  as 

3

3

ˆ
ˆ

2 4
1

u

M


 


   

   
  

      (15)  

Subsequently, the standard deviation of the error term v  is estimated based on (12) as  

2

2

2ˆˆ ˆ
v uM


 



 
   

 
.     (16)  

There has been considerable discussion in the recent literature regarding the question of how to 

proceed if 
3M̂  is positive. Carree (2002), Alminidis et al. (2009), and Alminidis and Sickles (2012) 

consider alternative inefficiency distributions that allow for positive skewness. Simar and Wilson 

(2010) maintain the standard distributional assumptions, but suggest instead the use of 

bootstrapping method.  

 

5.2.2 Quasi-likelihood estimation 

Another way to estimate the standard deviations ,u v   is to apply the quasi-likelihood method 

suggested by Fan et al. (1996) (who refer to it as pseudo-likelihood). In this approach we apply the 

standard maximum likelihood (ML) method to estimate the parameters ,u v  , taking the shape of 

the CNLS curve as given (thus the term quasi-likelihood, in contrast to the full information ML 

which would also parameterize the coefficients of the frontier).  

One of the main contributions of Fan et al. (1996) was to show that the quasi-likelihood 

function can be stated as a function of a single parameter (i.e., the signal-to-noise ratio /u v   )
13

 

as,  

  2

2
1 1

ˆ 1
ˆˆln ln ln

ˆ ˆ2

n n
i

i

i i

L n
 

  
  

 
     

 
  ,    (17) 

where  

   
1 2

2ˆ ˆ ˆ2 1CNLS

i i       
  ,    (18) 

 

1 2
2

2

1

1 2
ˆˆ ( ) 1

1

n
CNLS

i

jn


 

 

   
   

   
 .     (19) 

Symbol   denotes the cumulative distribution function of the standard normal distribution N(0,1). 

We first use (18) and (19) to substitute out 
î  and ̂  from (17). We then maximize the quasi-

likelihood function (17) by enumerating over   values, using a simple grid search or more 

                                                 
13

 The signal-to-noise ratio  should not be confused with the intensity weights i  used in the envelopment formulation 

of DEA. 
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sophisticated search algorithms. When the quasi-likelihood estimate ̂  that maximizes (17) is 

found, we insert ̂  to equations (18) and (19) to obtain estimates of 
i  and  . Subsequently, we 

can calculate estimates of ˆ ˆˆ ˆ /(1 )u     and ˆˆ ˆ /(1 )v    .  

A simple practical trick to conduct quasi-likelihood estimation is to use ML algorithms 

available for SFA in standard software packages (e.g., Stata, Limdep, or R). By specifying the 

CNLS residuals ˆCNLS

i  as the dependent variable (i.e., the output) and a constant term as an 

explanatory variable (input), we can trick the ML algorithm to perform the quasilikelihood 

estimation. This trick can also be used for estimating models involving contextual variables or 

heteroscedasticity (to be explored in Sections 7 and 8) by applying standard ML techniques as a 

second step.  

 

5.2.3 Nonparametric kernel density estimation for the convoluted residual 

While both method of moments and quasilikelihood techniques require parametric assumptions, a 

fully nonparametric alternative is available for estimating the signal-to-noise ratio   , as proposed 

by Hall and Simar (2002). Their strategy is to search for a discontinuity in the residual density. The 

logic is that if an inefficiency term is left truncated, to represent efficient performance, there must 

be a discontinuity in distribution. When inefficiency is convoluted with noise, characterized by a 

continuous and smooth function, the discontinuity will still exist in the convoluted variable’s 

density, the estimated residuals density. Thus, Hall and Simar suggest estimating the density of the 

residual using kernel methods and use these estimates to identify the largest change in the derivative 

on the right-side of the distribution (in the case of a production function and left-side in the case of 

the cost function). Then under the assumption of homoscedastic noise and inefficiency, the location 

of the largest change in the derivative can be used to estimate the mean inefficiency in the sample. 

 More formally, note that residuals ˆCNLS

i  are consistent estimators of i i     . Thus, we 

can apply the kernel density estimator for estimating the density function of i


. Denote the kernel 

density estimator by f
 

. Hall and Simar (2002) show that the first derivative of the density 

function of the composite error term ( f ) is proportional to that of the inefficiency term ( uf  ) in the 

neighborhood of  . This is due to the assumption that 
uf  has a jump discontinuity at zero. 

Therefore, a robust nonparametric estimator of expected inefficiency   is obtained as 

 ˆˆ arg max( ( ))
z

f z


 


 , 

where   is a closed interval in the right tail of f
 

. 

 

5.3 Step 3: Estimating the frontier production function 

In the presence of asymmetric inefficiency, the CNLS estimator estimates the conditional mean 

function ( ) ( )i ig f  x x . Having estimated the expected inefficiency   in Step 2, we can easily 

adjust the CNLS estimator to obtain an estimator of the frontier f. However, recall from Section 3 

that the CNLS estimator of g is unique at the observed points xi (i=1,…,n) but not in unobserved x. 

Therefore, Kuosmanen and Kortelainen (2012) recommend applying the lower bound of g 

(analogous to equation (5)), defined as   

 min
,

ˆ ˆ( ) min ( ) 1,...,CNLS CNLS

i ig g i n


       
β

x β x β x x .    (20) 

We can subsequently add the expected inefficiency   to estimate the frontier using  
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min
ˆ ˆ ˆ( ) ( )StoNED CNLSf g  x x . 

This equation summarizes the relation between the StoNED frontier and the CNLS estimator as 

well as the relation between the frontier function f and the conditional mean function g. The 

heteroscedastic case where the shapes of the frontier f and the regression ( )i iE y x  are different will 

be discussed in Section 8 below.   

 

5.4 Step 4: Estimating firm-specific inefficiencies 

Measuring the distance from an observation to frontier is not enough for estimating efficiency in the 

stochastic setting because all observations are subject to noise. Hence the measured distance to 

frontier consists of both inefficiency and noise (plus any error in our frontier estimate).  

We must emphasize that even though there exist statistically unbiased and consistent 

methods for the estimation of the frontier f, there is no consistent method for estimating firm-

specific efficiencies u in the cross-sectional setting subject to noise. In a cross-section, estimating 

firm-specific realizations of a random variable ui is impossible because we have only a single 

observation of each firm and all observations are perturbed by noise. This is not a fault of the 

methods (let alone their developers), it is just impossible to predict a realization of random variable 

based on a single observation that is subject to noise.  

In the normal – half-normal case, Jondrow, Lovell, Materov and Schmidt (1982) (JLMS) 

develop a formula for the conditional distribution of inefficiency ui given 
i . The commonly used 

JLMS estimator for inefficiency is the conditional mean ( )i iE u  . Given the parameter estimates 

ˆ
u  and ˆ

v , the conditional expected value of inefficiency can be calculated as
14
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   
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    

,   (21) 

where   is the density function of the standard normal distribution N(0,1),   is the corresponding 

cumulative distribution function, and  

ˆ ˆ ˆ 2 /CNLS

i i u       

is the estimator of the composite error term (compare with (18)). It is worth to note that there is 

nothing “stochastic” in the equation (21): the JLMS formula is a simply a deterministic 

transformation of the CNLS residuals ˆCNLS

i  to a new metric that represents the conditional expected 

value of the inefficiency term. Indeed, the rank correlation of the CNLS residuals ˆCNLS

i  and the 

JLMS inefficiency estimates is equal to one (see Ondrich and Ruggiero, 2001). For the purposes of 

relative efficiency rankings, the CNLS residuals ˆCNLS

i  are sufficient.  

Horrace and Parmeter (2011) show that the parametric assumption of the inefficiency 

distribution can be relaxed. Their approach still requires the parametric assumption of normally 

distributed noise. Rather than assuming a specific parametric distribution for the inefficiency term, 

the authors assume the density of u belongs to the ordinary smooth family of distributions, which 

includes exponential, gamma or Laplace (see also Fan, 1991). They apply Hall and Simar’s (2002) 

                                                 
14

 Note that equation (21) corrects the errors noted in formulations stated by Kuosmanen and Kortelainen (2012) and 

Keshvari and Kuosmanen (2013). 
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method to estimate the jump discontinuity and thus the signal to noise ratio. Given the mean 

inefficiency level the authors are then able to construct the full density distribution of the 

inefficiency term using kernel smoothing and the residuals from a conditional mean estimation.  

 

5.5 Statistical specification tests of the frontier model  

As discussed above, the StoNED estimator consists of four steps. If all firms are efficient and 

deviations from the frontier are due to noise, the step 1 of estimating the conditional mean function 

is sufficient, and there is no reason to proceed further to step 2 of estimating the mean inefficiency 

to step 3 shifting the conditional mean function or step 4 estimating firm specific inefficiencies. To 

determine whether one should proceed from step 1 further to step 2, the efficiency analyst may want 

to test the data for evidence of inefficiency. If the results of a statistical specification test indicate 

that there is significant inefficiency present, this can be a convincing argument even for skeptics 

who believe that markets function efficiently.    

The residual ˆCNLS

i  consists of two components, a normally distributed noise term and a left-

truncated inefficiency term. Schmidt and Lin (1984) propose a test of the skewness of the residuals 

as a method to investigate if inefficiency is present. By only looking at the skewness, the method is 

robust to the common alternative specifications of the inefficiency term in the stochastic frontier 

model. Thus, the null hypothesis is the residuals are normally distributed and a 1b  test calculated 

as  

3
1 3 2

2( )

m
b

m
  (22) 

Where 
2m  and 

3m  are, the second and third moments of the residuals respectively. The distribution 

of the skewness test statistic,  √   can be constructed by a simple Monte Carlo simulation as 

described in D’Agostino and Pearson (1973). The authors also provide tables with critical values of 

the proposed test statistic for different sample sizes.  

Kuosmanen and Fosgerau (2009) consider a fully nonparametric specification test that relaxes 

the normality assumption of the noise term. They show that the same test statistic 1b  considered 

by Schmidt and Lin (1984) can be used for testing the null hypothesis of a symmetric v against the 

alternative hypothesis of skewness. They also recognize the  √   can wrongly reject the null 

hypothesis if the distribution is symmetric but has fat tails. Thus, they propose the additional 
2b  test 

of the fourth moment 

4
2 2

2( )

m
b

m
  (23) 

Where 
2m  and 

4m  are the second and fourth moments of the residuals respectively. The null 

hypothesis is that the distribution is normally distributed. The alternative hypothesis is that there is 

non-normal kurtosis. The results of the 1b  and 
2b  tests can be given the following interpretation: 

- If the null hypothesis of normality is rejected in the 1b  test but maintained in the 
2b  test, 

there is strong evidence in favor of a frontier model.  

- If the null hypothesis of normality is maintained both in the 1b  and 
2b  tests, this supports 

the hypothesis of a competitive market with no inefficiency present.  

- If the null hypothesis is rejected in the 
2b  test, there may be data problems or model 

misspecification. There is no conclusive evidence in favor or against the frontier model. 
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It is worth noting that the power of the test depends on how specifically the null hypothesis 

and the alternative hypothesis are stated. For example, the 1b  test of normality is more powerful 

than the fully nonparametric test of symmetry. If we are willing to impose some distributional 

assumptions for the inefficiency term, then more powerful specification tests are available. For 

example, Coelli (1995) proposed a variant of the Wald test to test the null hypothesis that there is no 

inefficiency, i.e. 2 0u  , against the alternative 2 0u  . While imposing distributional assumptions 

can increase the power of the test, it will also increase the risk of misspecification, which would 

make the statistical test inconsistent. 

 

6. Extensions 

6.1 Multiplicative composite error term 

Most SFA studies use Cobb-Douglas or translog functional forms where inefficiency and noise 

affect production in a multiplicative fashion. In the present context, it is worth noting that the 

assumption of constant returns to scale (CRS) would also require multiplicative error structure, as 

will be discussed in more detail below. Further, a multiplicative error specification implies a 

specific model of heteroscedasticity in which the variance of the composite error term increases 

with firm size. 

Multiplicative composite error structure is obtained by rephrasing model (1) as 

( ) exp( ) ( ) exp( )i i i i i iy f f v u    x x     (24) 

Applying the log-transformation to equation (23), we obtain 

ln ln ( )i i iy f  x .      (25) 

Note that the log-transformation cannot be applied directly to inputs x – it must be applied to the 

production function f.  

In the multiplicative case, the CNLS formulation (3) can be rephrased as 

2
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β x
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     (26) 

where 1i   is the CNLS estimator of ( )i iE y x . The value of one is added here to make sure that 

the computational algorithms do not try to take logarithm of zero. The first equality can be 

interpreted as the log transformed regression equation (using the natural logarithm function ln(.)). 

The second through fifth constraints are similar to (3) with the exception observed output in (3) is 

replaced with 1i  . The use of 
i  allows the estimation of a multiplicative relationship between 

output and input while assuring convexity of the production possibility set in original input-output 

space.
15

  

Note that the log-transformation of a model variable renders the optimization formulation as a 

nonlinear programming (NLP) problem. These constraints are shown separately to illustrate the 

                                                 
15

 If we apply the log transformation directly to input data, the resulting frontier would be a piece-wise log-linear 

frontier, which has been considered in the DEA literature by Charnes  et al. (1982) and Banker and Maindiratta (1986). 

Unfortunately, the piece-wise log-linear frontier does not generally satisfy the concavity of f. 
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connection to previous formulations, but the first equality constraint can be moved to the objective 

function by solving and substituting for ˆCNLS

i . Thus we have a convex solution space and a 

nonlinear objective function. This formulation can be solved by standard nonlinear programming 

algorithms and solvers. NLP solvers are available for example in such mathematical programming 

packages as GAMS, AIMMS, Matlab, and Lindo, among others. 

In the multiplicative case, the CNLS estimator (25) can be applied, or as the first step of the 

C
2
NLS or StoNED estimation routine. The standard method of moment, quasi-likelihood and kernel 

deconvolution techniques apply, as described in Section 5. However, note that in step 3 the frontier 

production function is obtained as ˆ ( )StoNED

if x =
min

ˆ ˆ( ) exp( )CNLSg x , where 
min

ˆ ( )CNLSg x  is the minimum 

function computed using equation (19.5) and ˆexp( )  is the estimated average efficiency. A 

convenient feature of the multiplicative model is that exp(ui) can be interpreted as the Farrell output 

efficiency measure. 

 

6.2 Panel data 

In panel data the sample of firms is observed repeatedly over multiple time periods. Panel data 

applications are common in the SFA literature and a number of alternative SFA models involving 

time invariant and time varying inefficiency are available (see, e.g., Greene, 2008, Section 2.7). In 

contrast, DEA studies ignore the time dimension of the panel data and either pool the panel together 

as a single cross section or treat each time period as an independent cross section.
16

  

The regression interpretation of DEA examined in Section 4.1 allows us to combine DEA-

style axiomatic frontier with the modern panel data methods from econometrics. Kuosmanen and 

Kortelainen (2012, Section 4.1) were the first consider a fixed effects approach to estimating a time 

invariant inefficiency model. Their fully nonparametric panel data StoNED estimator can be seen as 

a nonparametric counterpart to the classic SFA approach by Schmidt and Sickles (1984). In the 

following we consider the random effects approach, building upon Eskelinen and Kuosmanen 

(2013).  

Consider a data set where each firm is observed over time periods 1,...,t T and define a 

time invariant frontier model   

( ) 1,..., 1,...,it it i ity f u v i n t T      x ,  (27) 

where ity  is the observed output of firm i in time period t, 
itx  is a vector of inputs consumed by 

firm i in time period t, and f is a frontier production function that is time invariant and common to 

all firms. As before, 
iu  is a firm specific inefficiency term that does not change over time, and 

itv  is 

a random disturbance term of firm i in period t. Similar to the cross-sectional model, we assume that 

iu  and itv  are independent of inputs itx  and of each other.
17

 

To estimate the model (27), we can adapt the standard CNLS estimator as 

                                                 
16

 One notable exception is Ruggiero (2004). 
17

 The random effects approach to panel data requires that the time invariant inefficiency is uncorrelated with inputs. 

This is a strong assumption. Marschak and Andrews (1944) were among the first to note that rational firm manager will 

adjust the inputs to take into account the technical inefficiency, and hence the observed inputs are correlated with 

inefficiency. In that case, the random effects estimator is biased and inconsistent. The fixed effects estimator considered 

by Kuosmanen and Kortelainen (2012) does not depend on this assumption.   
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  (28) 

where ˆCNLS

it  is the CNLS residual of firm i in period t. Note the parameters 
it  and 

itβ  that define 

the tangent hyperplanes of the estimated production function are specific to each firm in each time 

period. Thus, a piece-wise linear frontier is estimated with as many as nT hyperplanes.  

Given the optimal solution to (28), we compute the firm-specific effects as 

1

1
ˆ

T
CNLS CNLS

i it

tT
 



    (29) 

Following Schmidt and Sickles (1984) we measure efficiency relative to the most efficient firm in 

the sample (analogous to the C
2
NLS approach considered in Section 4.2) and define 

 1,...,
ˆ ( max )StoNED CNLS CNLS

i h i
h n

u  


  .    (30) 

To estimate theconditional mean function, we can adapt equation (20) to panel data as 

 min
,

ˆ ˆ( ) min ( ) 1,..., ; 1,...,CNLS CNLS

it itg g i n t T


         
β

x β x β x x . 

The StoNED frontier estimator is then obtained as  

 
min

1,...,

ˆ ˆ( ) ( ) ( max )StoNED CNLS CNLS

h
h n

f g 


 x x . 

Both the frontier and inefficiency estimators can be shown to be statistically consistent under the 

assumptions stated above.  

Note that the panel data StoNED estimator described above is fully nonparametric in the 

sense that no parametric functional form or distributional assumptions are required. Still, the model 

described in equation (27) relies on two strong assumptions: i) there is no technical progress, and ii) 

inefficiency is constant over time. It is possible to relax these assumptions, but this will require 

some additional assumptions (typically imposing some parametric structure). Note that random 

effects estimator considered above may still be useful even if inefficiency changes over time. In that 

case, the inefficiency estimator can be interpreted as the average efficiency during the time period 

under study. Eskelinen and Kuosmanen (2013) propose to examine the development trajectories of 

the normalized CNLS residuals 
 1,...,

ˆ / ( max )CNLS CNLS

it h
h n

 


 to gain a better understanding how the firm 

performance has developed during the study period. While the normalized CNLS residuals contain 

random noise, a growth trend (or decline) provides a clear indication that the performance of the 

firm has improved (or deteriorated) during the study period. 

Based on the previous discussion, two insights are worth noting:  

1) Panel data is not a panacea: while we recognize that panel data provides a richer set of 

information, we must also acknowledge that the intertemporal setting involves complex dynamics 

such as technological progress and changes in efficiency over time. The random effects approach to 

panel data considered above would be ideal for modeling experimental data where the researcher 

can control the input levels and keep the production technology the same across repeated 

experiments. However, most panel data applications of stochastic frontiers use observational data 

where both the production function and the level of efficiency will likely change over time.   
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2) Resorting to a fully nonparametric approach does not imply freedom from restrictive 

assumptions. In fact, avoidance of parametric assumptions often comes at the cost of very restrictive 

assumptions of no noise, no technical progress, or time invariant inefficiency. Indeed, insisting on a 

fully nonparametric approach can be more restrictive than resorting to some parametric assumptions 

that allow for explicit modeling of noise, technical progress, or time varying inefficiency.  

 

6.3 Multiple outputs (DDF formulation)  

The ability to model multiple inputs and multiple outputs has long been touted as an advantage of 

DEA over SFA: several DEA papers erroneously state that SFA cannot deal with multiple outputs. 

Lovell et al (1994) and Coelli and Perelman (1999; 2000) were the first to consider a stochastic 

distance function model that characterizes a general multiple inputs and multiple outputs technology 

using the radial input and output distance functions. The recent paper by Kuosmanen, Johnson and 

Parmeter (2013) (henceforth KJP) examines the assumptions of the data generation process that 

need to be satisfied for econometric identification of the distance function when the data are subject 

to random noise. Although the econometric estimation of distance functions is feasible, the well-

established drawbacks of SFA still apply: a functional form needs to be specified for the distance 

function and parametric assumptions are typically made to decompose the residual into inefficiency 

and noise. Further, the commonly used parametric functional forms have the wrong curvature in 

output space, which is a serious problem for modeling joint production of multiple outputs.
18

  

Up to this point, the CNLS/StoNED framework has been presented in the single output, 

multiple input setting. In this section we describe the CNLS estimator within the directional 

distance function (DDF) framework, Chambers et al. (1996, 1998). The CNLS formulation satisfies 

the axiomatic properties of the DDF by construction, models multiple inputs and multiple outputs, 

and accounts for stochastic noise explicitly, addressing the key limitations of both DEA and the 

parametric approaches. In the following we will briefly describe the stochastic data generating 

process (DGP) and the estimation of the DDF by CNLS. See KJP for a more detailed discussion.  

The DDF indicates the distance from a given input-output vector to the boundary of the 

production possibility set T in some pre-assigned direction ( , )x y m s

g g , formally,  

 ( , , , ) sup ( , )x y x y
TD T



     x y g g x g y g .   (31) 

Denote the reference input-output vector of firm i in the direction ( , )x y
g g  by ( , )i i

 
x y . In this 

section we do not impose any particular behavioral hypothesis, but it may be illustrative to interpret 

( , )i i

 
x y  as the optimal solution to firm i’s profit maximization problem. Regardless of the firm 

manager’s objective, we assume ( , )i i

 
x y  lies on the boundary of the production possibility set T and 

hence the values of the DDF satisfy 

( , , , ) 0  1, ,x y
T i iD i n     x y g g      (32) 

                                                 
18

 The wrong curvature violates some of the most elementary properties of production technologies. For example, the 

Cobb-Douglas or translog specifications of the distance function will violates the basic properties of null jointness and 

unboundedness (see, e.g., Färe et al., 2005). Another problem concerns the economies of scope (e.g., Panzar and Willig, 

1981). For example, the Cobb-Douglas distance function cannot capture the economies of scope at any parameter 

values. Since the economic rationale for joint production is rooted to economies of scope, it is contradictory to apply a 

technology that exhibits economies of specialization for modeling joint production.    
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The observed input-output vectors ( , ),  1,...,i i i nx y , are perturbed in direction 

( , )x y m s

g g  by random inefficiency 
iu  and noise vi, which form the composite error term 

i i iu v    (note the positive sign of the inefficiency term 
iu ). Specifically, the observed data are 

perturbed versions of the optimal input-output vectors as follows 

( , ) ( , )  1, ,x y

i i i i i i i n       x y x g y g     (33) 

We assume the inefficiency and noise terms satisfy the assumptions discussed in Section 2. Note 

that the elements of the direction vector ( , )x y
g g  represent the impacts of inefficiency and noise on 

specific input and output variables. If an element of ( , )x y
g g  is equal to zero, it means that the 

corresponding input or output variable is immune to both inefficiency and noise in the DGP. The 

larger the value of an element of ( , )x y
g g  in the DGP, the larger the impact of inefficiency and 

noise on the corresponding input or output variable is. Interestingly, Proposition 3 in KJP shows 

that in the DGP described above the value of the DDF equals the composite error term:  

( , , , )   x y
T i i iD i x y g g . 

This result provides implicitly a regression equation for estimating the DDF. We can resort to a 

similar stepwise procedure as described in Section 5. 

The first step is to estimate the conditional mean distance defined as 

( , , , ) ( , , , )x y x y

i i i id D  x y g g x y g g      (34) 

Let  denote the set of functions that satisfy the axioms of free disposability, convexity, and the 

translation property.
19

 We can adapt the CNLS estimator to the DDF setting by postulating the 

following infinite dimensional least squares problem 

 

2

1

min ( , , , )

subject to

n
x y

i i
d

i

d

d





 x y g g

  (35) 

Formulation (35) is a complex, infinite dimensional optimization problem that cannot be solved by 

brute-force numerical methods. The main challenge is to find a way to parameterize the infinitely 

large set of functions that satisfy the stated regularity conditions. Here again we apply insights from 

Kuosmanen (2008) and show an equivalent finite dimensional representation in terms of quadratic 

programming. Consider the following QP problem  

                                                 
19

 The translation property, Chambers et al. (1998), states that if we move from the initial point (x,y) in the direction (
x

g , y
g ) by factor  , i.e., to the point  ( , )x y  x g y g , then the distance to the frontier decreases by  . This 

property is crucial for the internal consistency of the DDF and can be seen as an additive analogue of the linear 

homogeneity property of the input distance function.  
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  (36) 

Note that the residual ˆCNLS

i  here represents the estimated value of id (i.e., ( , , , )x y

i i iD ux y g g ). 

We also introduce new firm-specific coefficients 
iγ  that represent marginal effects of outputs to the 

DDF. The first constraint defines the distance to the frontier as a linear function of inputs and 

outputs. The linear approximation of the frontier is based on the tangent hyperplanes, analogous to 

the original CNLS formulation. The second set of constraints is the system of Afriat inequalities 

that impose global concavity. The third constraint is a normalization constraint that ensures the 

translation property. The last two constraints impose monotonicity in all inputs and outputs. It is 

straightforward to show that the CNLS estimator of function d satisfies the axioms of free 

disposability, convexity, and the translation property (see Theorem 3 in KJP).  

 After solving the CNLS problem, one can proceed to estimate the deterministic frontier by 

Corrected CNLS as described in Section 4.2 or the stochastic frontier by StoNED as described in 

Section 5.2. Note that the CNLS estimator described above does not estimate the DDF directly, but 

rather ( , , , ) ( )x y

i i iD E ux y g g . If the inefficiency term is homoscedastic, then the techniques 

described in Section 5.2 apply for the estimation of ( )iE u  . The case of heteroskedastic 

inefficiency term is discussed in Sections 8.2 and 8.3 below. Subsequently, the estimate of the DDF 

is obtained by shifting the CNLS estimate of function d in direction ( , )x y
g g  by the estimated 

expected inefficiency. 

To connect the multi-output DDF to the single output case, it is worth noting in the single 

output case, specifying the direction vector as g
y
=1 and g

x
=0, the CNLS problem (36) reduces to  
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  (37) 

This formulation is equivalent to the CNLS formulation (3) developed in Kuosmanen (2008), 

except for the sign of the residual ˆCNLS

i  in the first constraint. Note that the DDF has positive 

values below the frontier and negative values above the frontier, which explains the negative sign.  

 

6.4 Convex nonparametric quantile regression and asymmetric least squares 

While CNLS estimates the conditional mean ( )i iE y x , quantile regression aims at estimating the 

conditional median or other quantiles of the response variable (Koenker and Bassett, 1978; 
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Koenker, 2005).
20

 Denoting the pre-assigned quantile by parameter (0,1)q , we can modify the 

CNLS problem (3) to estimate convex nonparametric quantile regression (CNQR) (Wang et al., 

2014) as follows:
21
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The CNQR problem differs from CNLS in that the composite error term is now broken down to two 

non-negative components , 0i i    . The objective function minimizes the asymmetric absolute 

deviations from the frontier instead of symmetric quadratic deviations. The pre-assigned weight q 

defines the quantile to be estimated. For example, by setting q = 0.05, the piece-wise linear CNQR 

function will allow at most 5 percent of observations to lie above the fitted function and envelope at 

most 95 percent of the observed data points. As the sample size approaches to infinity, the q-order 

frontier will envelop exactly q percent of the observed data points (Wang et al., 2014, Theorem 1). 

Two important special cases are worth noting. First, if we set q = 0.5, then CNQR estimates the 

conditional median (whereas CNLS estimates the conditional mean). Secondly, as q approaches to 

zero, the negative deviations i
  get a larger weight, and the CNQR approaches to the DEA frontier. 

An appealing feature of the CNQR formulation is that its objective function and all 

constraints are linear functions of unknown parameters, and hence the CNQR problem can be 

solved by standard linear programming (LP) algorithms. However, a major drawback compared to 

CNLS is that the optimal solution to the CNQR problem is not necessarily unique, not even for the 

observed data points ( , ),  1,...,i iy i nx . In econometrics, non-uniqueness of quantile regression is 

usually assumed away by assuming the regressors x are randomly drawn from a continuous 

distribution. In practice, however, input vectors x are not randomly drawn, and there may be two or 

more firms use exactly the same amounts of inputs (i.e., i jx x  for firms i and j). In our 

experience, non-uniqueness of CNQR seems to be particularly a problem in samples where inputs x 

are discrete variables. Wang et al. (2014) recognize non-uniqueness of the CNQR estimator, 

illustrating the problem with a numerical example.  

One possible way to resolve the non-uniqueness problem is to apply the asymmetric least 

squares criterion suggested by Newey and Powell (1987), and reformulate the CNQR problem as 

                                                 
20

 In the DEA literature, the quantile frontiers are commonly referred to as robust order-m and order-α frontiers (e.g., 

Aragon et al. 2005; Daouia and Simar, 2007). However, while quantile frontiers are more robust to outliers than the 

conventional DEA frontiers, the quantile DEA approaches typically assume away noise. 
21

 Similar quantile formulation was first considered by Banker et al. (1991), who refer to it as ”stochastic DEA”.  
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To our knowledge, this asymmetric least squares formulation has not been considered before; we 

will henceforth refer to it as convex asymmetrically weighted least squares (CAWLS). The CAWLS 

problem differs from CNQR only in terms of the objective function, which now minimizes the 

asymmetric squared deviation instead of the absolute deviations. In the case of the linear regression, 

Newey and Powell (1987) show that the properties of the asymmetric least squares estimator are 

analogous to those of the quantile regression, but the asymmetric least squares can be more 

convenient for statistical inferences. In the present context, we hypothesize that the use of the 

quadratic loss function similar to CNLS ensures that the optimal solution to the CAWLS problem is 

always unique for the observed data points ( , ),  1,...,i iy i nx . We leave confirming or rejecting this 

hypothesis as an open question for future research. Besides the question of uniqueness, the 

statistical properties of both CNQR and CAWLS would require further research.  

CNQR and CAWLS formulations allow one to estimate the q-quantile or q-expectile frontiers 

directly, without a need to impose parametric distributional assumptions for the inefficiency and 

noise terms or resort to stepwise estimation along the lines described in Section 5. This is one of the 

attractive properties of CNQR and CAWLS. For the purposes of efficiency analysis, however, the 

use of quantiles or asymmetric weighted least squares is not a panacea. It is important to stress that 

the distance from the frontier, measured as ˆ ˆ ˆCNQR

i i i      or ˆ ˆ ˆCAWLS

i i i      (note: in both cases the 

residuals satisfy ˆ ˆ 0 i i i     ), should not be interpreted as a measure of inefficiency, as the distance 

to frontier also includes noise. To estimate conditional expected value of inefficiency along the 

lines of JLMS, we still need to resort to stepwise estimation. One possibility is to replace CNLS by 

CNQR or CAWLS as the first step of the StoNED procedure outlined in Section 5. Of course, 

residuals ˆCNQR

i  or ˆCAWLS

i  can be used as such for relative performance rankings, but such 

performance rankings obviously depend on the chosen parameter value of q. Wang et al. (2014) 

examine the specification of q for frontier estimation, showing that the optimal value of q is a 

monotonically decreasing function of the signal to noise ratio /u v   . One may set the value of 

q based on subjective judgment, but in real world applications (consider, e.g., regulation of 

electricity distribution networks; see Kuosmanen, 2012; Kuosmanen, Saastamoinen and Sipiläinen, 

2013), some objective criteria for specifying q would be important. 

One appealing feature of the q-quantile and q-expectile frontiers is that they are robust to 

heteroscedasticity. Therefore, testing of and dealing with heteroscedasticity provide one promising 

application area for the CNQR and CAWLS techniques. If the composite error term is 

homoscedastic, then the quantile and expectile frontiers should have similar shapes at different 

values of q. Newey and Powell (1987) apply this idea for testing heteroscedasticity. We return to 

this issue in more detail in Section 8.  
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7. Contextual variables 

A firm’s ability to operate efficiently often depends on operational conditions and practices, such as 

the production environment and the firm specific characteristics for example technology selection 

or managerial practices. Banker and Natarajan (2008) refer to both variables that characterize 

operational conditions and practices as contextual variables. Currently two-stage DEA (2-DEA) is 

widely applied to investigate the importance of contextual variables as summarized by the citations 

included in Simar and Wilson (2007). However, its statistical foundation has been subject to sharp 

debate between Simar and Wilson (2007, 2011) and Banker and Natarajan (2008) (see also Hoff, 

2007; McDonald, 2009). In this section we shed some new light on this debate following Johnson 

and Kuosmanen (2011, 2012).  

It is important to note that Simar and Wilson (2007, 2011) do not consider stochastic noise in 

their DGP. In contrast, Banker and Natarajan (2008) introduce a noise term that has a doubly-

truncated distribution, following the DEA+ approach by Gstach (1998). In this setting, Johnson and 

Kuosmanen (2012) show that the 2-DEA estimator of contextual variables is consistent under more 

general assumption that those stated by Banker and Natarajan (2008) and criticized by Simar and 

Wilson (2011). Further, Johnson and Kuosmanen (2012) employ the least squares formulation of 

DEA to develop a one-stage DEA method (1-DEA) for estimating the effects of the contextual 

variables. Relaxing the peculiar assumption of truncated noise,
22

 Johnson and Kuosmanen (2011) 

develop stochastic (semi-) nonparametric envelopment of z-variables data (StoNEZD).  

Taking the multiplicative model described in Section 6.1 as our starting point, we introduce 

the contextual variables, represented by r-dimensional vectors 
iz  that represent the measured values 

of operational conditions and practices, to obtain the following semi-nonparametric, partial log-

linear equation  

ln ln ( )i i i i iy f v u   x δ z . (40) 

In this equation, parameter vector
 1( )r  δ

 
represents the marginal effects of contextual 

variables on output. All other variables maintain their previous definitions. 

In the following sub-sections we will present two-stage DEA (2-DEA), one-stage DEA, and 

StoNEZD estimators. First, the 2-DEA estimator is described and the statistical properties of it are 

discussed. Given the assumptions necessary for the consistency of two-stage DEA method we then 

present the one-stage alternative. The joint estimation avoids the bias in the DEA frontier being 

transmitted to the parameter estimates of the coefficients on the contextual variables; however, the 

frontier estimated is still the minimum envelopment of the data and thus does not account for noise 

in the production model or input/output data. To account for stochastic noise, StoNEZD is 

introduced in 7.3.  

 

7.1 Two-stage DEA 

The literature on 2-DEA includes a number of variants. This sub-section follows the approach by 

Banker and Natarajan (2008). The two stages of their 2-DEA method are the following. In the first 

                                                 
22

 We label this assumption as peculiar because it contradicts standard statistical assumptions, namely, the residual term 

is often model as normally distributed because a mixture of a large number of unknown distributions is approximately 

normal in finite samples and  asymptotically normal. The large number of unknown distributions is a result of 

measurement errors, modeling simplifications, and other sources of noise. Thus, the motivation for truncated normal 

distribution used in Gstach (1998) and Banker and Natarajan (2008) is lacking and peculiar as also noted by Simar and 

Wilson (2011). Johnson and Kuosmanen (2012) argue this truncation may come from an outlier detection procedure 

that would remove extreme observations from the analysis.  However, in this case 1-DEA (introduced below) would 

still be preferred to 2-DEA because the bias introduced in two-stage estimation.  
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stage, the frontier production function f  is estimated using the nonparametric DEA estimator 

formally stated as (5). The DEA output efficiency estimator of firm i is stated as 

DEA ˆˆ / ( )DEA

i i iy f  x  and computed as  

 DEA 1

1 1 1,

( ) max ; ; 1
n

n n n

i i h h i h h hh h h
y y

 
     





   

     x x  (41)  

In the second stage, the following linear equation is estimated using OLS or ML  

DEA 2ˆln DEA

i i i     δ z , 1,...,i n , (42) 

where the intercept   captures the expected inefficiency and the finite sample bias of the DEA 

estimator, and the composite disturbance term 
2 DEA

i


 
captures the noise term vi and the deviations 

of ui from the expected inefficiency µ. Note that the dependent variable has the “hat” because the 

DEA efficiency estimate is computed beforehand using (41), whereas the parameters on the right 

hand side of (42) are estimated using OLS or ML in a second stage. 

Johnson and Kuosmanen (2012) state that the 2-DEA estimator is statistically consistent in 

the case of truncated noise as shown by Banker and Natarajan (2008), however, the assumptions 

required for consistency in Banker and Natarajan are unnecessarily restrictive.  

Let Z  denote a n r  matrix of contextual variables. Assume the noise terms are truncated 

as 
M

iv V  and denote 1( ,..., )nv v v . Denote the domains of vectors x  and z  by 
xD  and 

zD , 

respectively. Then the statistical consistency of the 2-DEA estimator can be established under the 

relaxed set of assumptions as follows.  

 

Theorem 7: If the following five assumptions are satisfied  

(i) sequence { ( , , )i i iy x z , i=1,…,n} is a random sample of independent observations, 

(ii) lim /
n

n


Z Z  is a positive definite matrix, 

(iii) noise term v has a truncated distribution: 
MVv 1 , ( ) 0M

vf V  ,  

(iv) elements of domain Dz are bounded from above or below such that δ z  has a finite 

maximum max
zD





z

δ z  at a point arg max
zD






z
z δ z ,  

(v) the joint density f is continuous and satisfies ( , ,0, ) 0Mf V x z
 
for all 

xDx ,  

 

then the 2-DEA estimators are statistically consistent in the following sense 

DEAˆplim ( ) ( ) exp( )M

i i
n

f f V 


  x x
 
for all i = 1,…,n, 

2-DEAˆplim  
n

δ δ  

Proof. See Johnson and Kuosmanen (2012), Theorem 1. 

 

This theorem by Johnson and Kuosmanen (2012) generalizes the consistency result by Banker 

and Natarajan (2008) result by relaxing the following two assumptions:  

 

1) inputs and contextual variables are statistically independent,  

2) the effect of contextual variables is one-sided: , Z 0 δ 0 .  
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Note that the DEA frontier does not converge to the true frontier f , it converges to 

( ) exp( )Mf V  x  (i.e., the frontier augmented by the maximum noise V
M

 under the ideal conditions 

represented by 
z ) thus estimation of the frontier requires observing firms that are operating 

efficiently and are operating in the best environment and happen to get a noise drawn close to the 

upper bound V
M

.  

Consistency is a relatively weak property. In practice a data set will be finite in size and 

probably not as large as we would like. However, Johnson and Kuosmanen (2012) are able to 

provide the explicit form of the bias in the 2-DEA estimator. Specifically it depends on the bias of 

the DEA frontier (
DEAf̂ ) as follows: 

 

 2-DEA 1 DEAˆˆBias( ) ( ) Bias( ( ))f    
 

δ ZZ Z X , (43) 

where  

DEA

1 1

DEA

DEA

ˆ(ln ( )) ( ) exp( )

ˆBias( ( ))

ˆ(ln ( )) ln ( ) exp( )

M

M

n n

E f f V

f

E f f V





   
 

  
 

   

x x

X

x x

. (44) 

 

Thus, the bias of the first-stage DEA estimator carries over to the second-stage OLS regression. 

Importantly, the bias of the second-stage OLS estimator is due to the correlation of Z and bias of 

the first-stage DEA estimator.  

In summary we would like to emphasize two critical points about 2-DEA.  

1) correlation of inputs and contextual variables does not influence the statistical consistency 

of 2-DEA estimator as long as the columns of X and Z matrices are not linearly dependent.  

2) the bias of the DEA frontier in the first-stage carries over to the second-stage OLS 

estimator through the correlation of the DEA frontier with the contextual variables.  

We note that statistical independence of inputs and contextual variables does not necessarily 

guarantee that 
DEAˆBias( ( ))f X  is uncorrelated with Z. Thus, 2-DEA does not suffer from some of 

the problems noted by Simar and Wilson (2011) and in fact requires significantly weaker 

assumptions than Banker and Natarajan (2008) suggest. However, the DEA frontier is always 

biased downward in a finite sample and thus this bias may be transferred to the estimation of the 

effect of the contextual variables. The following two sub-sections propose alternatives building on 

the regression interpretation of DEA which do not suffer from this bias.  

 

7.2 One-stage DEA 

The fundamental problem of the 2-DEA procedure is that the impact of the contextual variables Z is 

not taken into account in the first stage DEA. This problem has been recognized in the SFA 

literature, where the standard approach is to jointly estimate the frontier and the impacts of the 

contextual variables (e.g., Wang and Schmidt, 2002). In the similar vein, the least squares 

regression interpretation of DEA described in Section 4.1 allows us to estimate the DEA frontier 

and the coefficients δ  jointly. Specifically, we can introduce the contextual variables to the least 

squares formulation of DEA, stated as the QP problem (6), to obtain:  
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     (44) 

Notable differences compared to the problem (7) concern the use of the log-transformation to 

enforce the multiplicative formulation of the inefficiency term (compare with Section 6.1) and the 

truncation of the residual 1 DEA

i
  at point MV . Note that by setting 0MV   restricts the noise term to 

zero, and the 1-DEA formulation reduces to the joint estimation of the effect of the contextual 

variables and the classic deterministic DEA frontier where all input/output data is observed exactly 

and residuals are non-positive.  

Note further that the parameter vector  is common to all observations, and hence it can be 

harmlessly omitted from the Afriat inequalities that impose convexity. In fact, the contextual 

variables can be interpreted as inputs that have constant marginal products across all firms
23

 (i.e., 

we can think of matrix Z as a subset of X for which  ,i j i j β β ).  

The statistical properties of the 1-DEA estimator generally depend on the specification of the 

truncation point 
MV . Performance of the 1-DEA estimator has been investigated via Monte Carlo 

simulations in Johnson and Kuosmanen (2012) where the authors find that 1-DEA performs well 

even when the truncation point is misspecified. However, the assumption of truncated noise (i.e., 
M

iv V ) is non-standard and debatable (see, e.g., Simar and Wilson, 2011). While the consistency 

of 2-DEA critically depends on this assumption, the CNLS estimator allows us to harmlessly relax 

it. The next sub-section discusses the StoNED estimator with z-variables that does not rely on the 

truncated noise assumption.  

 

7.3 StoNED with z-variables (StoNEZD) 

Relaxing the assumption of truncated noise, we can apply CNLS to jointly estimate the expected 

output conditional on inputs and the effects of the contextual variables. Johnson and Kuosmanen 

(2011) were the first to explore this approach, referring to it as StoNED with z-variables 

(StoNEZD). StoNEZD incorporates the contextual variables to the stepwise procedure sescribed in 

Section 5. In the following, we will focus on the CNLS estimator applied in the first step: steps 2 – 

4 follow as described in Section 5, and are hence omitted here. 

To incorporate the contextual variables in step 1 of the StoNED estimation routine, we can 

refine the multiplicative CNLS problem as follows: 

                                                 
23

 This interpretation would vary slightly if the    is negative. Then the contextual variable would be an output which 

would reduce the firm’s ability to produce y. 

δ
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     (45) 

Note that problem (45) is identical to (44), except that the truncation constraint M

i V i    has been 

removed. Therefore, the least squares residuals are unrestricted, and hence problem (45) is a 

genuine conditional mean regression estimator.  

Denote by ˆ StoNEZD
δ the coefficients of the contextual variables obtained as the optimal 

solution to (45). Johnson and Kuosmanen (2011) examine the statistical properties of this estimator 

in detail, showing its unbiasedness, consistency, and asymptotic efficiency.
24

 Most importantly, the 

authors show that the conventional methods of statistical inference from linear regression analysis 

(e.g., t-tests, confidence intervals) can be applied for asymptotic inferences regarding coefficients δ . 

Their main result can be summarized as follows: 

 

Theorem 8 

If the following conditions are satisfied 

i) sequence ( , , )i i iy x z , i=1,…,n} is a random sample of independent observations,  

ii) lim /
n

n


Z Z  is a positive definite matrix, 

iii) the inefficiency terms u and the noise terms v are identically and independently distributed 

(i.i.d.) random variables with 2( ) uVar u I  and 2( ) vVar v I ,  

 then the StoNEZD estimator for the coefficients of the contextual variables ( ˆ StoNEZD
δ ) is statistically 

consistent and asymptotically normally distributed according to:  

 ˆ StoNEZD
δ ~a 

2 2 1( ,( )( ) )v uN   δ ZZ .

 

 

 

Proof. See Johnson and Kuosmanen (2011), Theorem 2. 

 

This theorem extends the standard result of asymptotic normality of the OLS coefficients to 

the StoNEZD estimator of the contextual variables. In other words, even though model (40) 

includes a nonparametric function in addition to a linear regression function, the presence of the 

nonparametric function does not affect the limiting distribution of the parameter estimator in the 

linear part. In addition, Johnson and Kuosmanen (2011) show that the estimator ˆ StoNEZD
δ  converges 

at the standard parametric rate, despite the presence of the nonparametric part in the regression 

equation. Therefore, we can apply the standard techniques from regression analysis such as t-tests 

and confidence intervals for asymptotic inferences.  

A simple trick to compute standard errors for ˆ StoNEZD
δ  is to run OLS regression where the 

contextual variables Z are regressors and the dependent variable is the difference between the 

                                                 
24

 Johnson and Kuosmanen (2012) report some Monte Carlo evidence of the finite sample performance of the StoNEZD 

estimator. 
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natural log of observed output subtracting the natual log of the input aggregation plus 1, specifically 

ˆ ˆ ˆln ln( 1) CNLS

i i i iy     δ z . This OLS regression will yield the same coefficients ˆ StoNEZD
δ  that were 

obtained as the optimal solution to problem (45),
25

 but also return the standard errors and other 

standard diagnostic statistics such as t-ratios, p-values, and confidence intervals.   

 

 

8. Heteroscedasticity 

Up to this point we have assumed that the composite error term is homoscedastic, implying the 

variance parameters 
2

u  and 
2

v  are constant across all firms. This is a standard assumption both in 

regression analysis and in the parametric literature of frontier estimation (e.g., Aigner et al., 1977). 

However, this assumption is not always realistic in applications.  

We can relax the assumption of constant 
2

u  and 
2

v , and allow these parameters to be firm 

specific (i.e., 2

,u i  and 2

,v i ,), and potentially dependent on inputs x and contextual variables z. We 

stress that the least squares approach considered in this paper enables us to apply standard 

econometric techniques of testing and modeling heteroscedasticity considered in the SFA literature 

(see, e.g., Kumbkahar et al., 1991; Caudill and Ford, 1993; Caudill et al., 1995; Battese and Coelli, 

1995; Hadri, 1999; and Kumbhakar and Lovell, 2000). The purpose of this section is to provide a 

brief review of how some of those techniques could be adapted for the purposes of CNLS and 

StoNED.  

The first question to consider is how would heteroscedasticity affect the CNLS and StoNED 

estimators if we simply ignore it? Like standard OLS, the CNLS estimator remains unbiased and 

consistent despite heteroscedasticity. A weighted CNLS estimator (to be considered below) might 

be more efficient, provided that the heteroscedastic variance parameters can be estimated with a 

sufficient precision. However, heteroscedasticity is not a major problem for CNLS, and trying to 

improve its performance through explicit modeling and estimation of heteroscedasticity may not be 

worth the effort. Further research would be needed to investigate this issue.   

The stepwise StoNED procedure is more sensitive to heteroscedasticity, as discussed by 

Kuosmanen and Kortelainen (2012). At this point, we need to distinguish between i) heteroscedastic 

inefficiency term and ii) heteroscedasticity noise term. Ignoring type ii) heteroscedasticity is less 

harmful in the StoNED estimation because the skewness of the CNLS residuals is still driven by the 

homoscedastic inefficiency term, the expected value of inefficiency is constant, and hence the shape 

of the regression function (i.e., the conditional mean ( )i i
E y x ) is identical to that of the frontier 

production function f. Type i) heteroscedasticity will cause bigger problems, as Kuosmanen and 

Kortelainen (2012) recognize. If the inefficiency term is heteroscedastic, then the expected value of 

inefficiency is no longer constant, and the shapes of the regression function and the frontier 

production function will diverge. To take both types of heteroscedasticity explicitly into account, in 

Section 8.2 we will consider a doubly-heteroscedastic model where both inefficiency and noise 

terms are heteroscedastic. But before proceeding to the explicit modeling of heteroscedasticity, we 

describe a diagnostic test of the homoscedasticity assumption. 

 

                                                 
25

 Note that this two-stage regression procedure is not subject to the problems of the 2-DEA procedure because we do 

control for the effects of the contextual variables in the first stage CNLS regression. It is just a computational trick to 

calculate the standard errors, but it can also serve as a simple diagnostic check that the solution to problem (32) is 

indeed optimal with respect to the contextual variables.   
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8.1 White test of heteroscedasticity applied to CNLS 

Although the heteroscedastic inefficiency term would bias the StoNED estimator, it is important to 

emphasize that we do not need to take the homoscedasticity assumption by faith. Standard 

econometric tests of heteroscedasticity such as the White or the Breusch-Pagan tests are directly 

applicable to CNLS residuals. In this sub-section we briefly describe how the White (1980) test can 

be applied following Kuosmanen (2012). 

The null hypothesis of the White test is that composite error term is homoscedastic, that is, 

H0: , ,  ,i j i j    . The alternative hypothesis states there is heteroscedasticity, that is, H1: 

, ,i j    for some i,j. Note that the alternative hypothesis does not assume any particular model of 

heteroscedasticity, which makes the White test compatible with the nonparametric approach. 

Postulating a more specific alternative hypothesis can increase the power of the test. However, the 

White test provides a useful starting point for more explicit modeling of heteroscedasticity.  

The White test can be built upon the OLS regression of the following equation:
 26
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j j h

x x x    
  

     .    (46) 

In words, we explain the squared CNLS residual by a constant, all m input variables, and their 

squared values and cross-products using a flexible quadratic functional form as an approximation of 

the true but unknown heteroscedasticity effects.  The test statistic is  
2W nR , 

where 2R  is the coefficient of determination of the OLS regression of equation (46). Under the null 

hypothesis of homoscedasticity, the test statistic W follows the 
2 ( )J  distribution with J degrees of 

freedom, where 1 ( 1) / 2J m m m     is the number of , ,    parameters on the right hand side of 

equation (46). If the value of test statistic W falls below the critical value of 
2 ( )J  at the given 

level of significance (note: the usual significance levels considered are 5% and 1%), then the null 

hypothesis of homoscedasticity is maintained. In that case, the test result provides some additional 

reassurance that the original model is well specified. On the other hand, if the value of test statistic 

W exceeds the critical value of 
2 ( )J  at the given level of significance, then the null hypothesis is 

rejected, and hence explicit modeling of heteroscedasticity is needed.   

The White test is usually presented in terms of the regressors of the original regression model 

(i.e., in terms of inputs x in the present context). Note that we are mainly concerned about possible 

heteroscedasticity with respect to inputs, which would cause bias in StoNED estimation. If we are 

interested in heteroscedasticity with respect to contextual variables z, we can also introduce the z-

variables to the regression equation (46). We only need to adjust the degrees of freedom J to include 

the number of additional parameters for the z-variables, otherwise the test procedure is conducted as 

described above. 

If significant heteroscedasticity is found, the White test does not indicate whether 

heteroscedasticity is in the inefficiency term or the noise term, or possibly both. To our knowledge, 

general diagnostic testing of whether heteroscedasticity is in the inefficiency or noise term has 

attracted little attention in the SFA literature. The doubly-heteroscedastic model (following Hadri, 

1999; and Wang, 2002), to be examined in detail in the next sub-section, does allow us model 

                                                 
26

 In econometrics, heteroscedasticity is usually modeled as a function of explanatory variables (i.e., inputs x). In 

contrast, the SFA literature usually models heteroscedasticity as a function of z-variables that may contain some (or all) 

of the inputs x. For clarity, in this section we follow the econometric convention and focus on heteroscedasticity with 

respect to inputs x and discuss the additional z-variables below. 
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heteroscedasticity in both inefficiency and noise terms, and also test for significance of the 

parameter estimates. However, such specification tests are conditional on the assumed model of 

heteroscedasticity, including the parametric distributional assumptions regarding inefficiency and 

noise. An appealing feature of the White test is it does not assume any specific model of 

heteroscedasticity and it does not depend on the distributional assumptions. Further, the parameter 

estimates of the auxiliary regression (46) and the associated diagnostic tools can provide some 

insights on which specific inputs (or contextual variables) are most likely causes of 

heteroscedasticity, and whether heteroscedasticity effect appears to be linear or non-linear, and 

whether the interaction terms (cross-products) are significant. These insights can be useful for 

specifying parametric models of heteroscedasticity, to be considered in the next sub-section. 

Before proceeding, note that quantile estimation (see Section 6.4) could provide a promising 

nonparametric route for testing heteroscedasticity. If the composite error term is homoscedastic, 

then the q-quantiles should have approximately same shape for different values of parameter q. 

Provided that the number of input (and output) variables is sufficiently small, plotting the estimated 

q-quantiles at different values of q allow one to visually inspect whether homoscedasticity holds by 

a reasonable approximation. If homoscedasticity is violated, the q-quantile plots can help one to 

identify in which part of the frontier heteroscedasticity occurs, and which inputs are likely sources 

of heteroscedasticity. In the context of linear quantile regression, Koenker and Bassett (1982) 

propose formal tests of heteroscedasticity based on the comparison of the estimated q-quantiles at 

different values of q. Newey and Powell (1987) apply a similar idea for the q-expectiles, noting that 

the q-expectiles could also be used for testing symmetry of the composite error term (i.e., whether 

the asymmetric inefficiency term u is significant; compare with Section 5.5). Adapting these tests to 

the nonparametric CNQR method for estimating q-quantiles and the CAWLS method for estimating 

q-expectiles introduced in Section 6.4 provides an interesting challenge for future research further 

discussed in section 9.  

 

8.2 Doubly-heteroscedastic model 

If the White test indicates significant heteroscedasticity, it is difficult to tell a priori whether 

heteroscedasticity is due to the inefficiency term, the noise term, or possibly both. Therefore, we 

will consider the general doubly-heteroscedastic model where both the inefficiency and noise term 

can be heteroscedastic. The doubly-heteroscedastic model was first considered by Hadri (1999). 

Our formulation below is mainly based on Wang (2002) and Kumbhakar and Sun (2013).  

Consider the unified model described in Section 2. In this section we assume the inefficiency 

term has a truncated normal distribution and the noise term is normally distributed according to  
2

,~ ( , )i i u iu N  
 

2

,~ (0, )i v iv N   

The pre-truncation mean of the inefficiency term is assumed to be a linear function of inputs: 

0i i   β x .   

The pre-truncation standard deviation of the inefficiency term and the standard deviation of the 

noise term are specified as  

, 1exp( )u i i    γ x  

, 2exp( )v i i   ρ x  
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Note that the exponent functions are commonly used in this context to guarantee that the standard 

deviations are positive at all input levels. While the specific parametric assumption may appear 

arbitrary, this model is one of the most flexible and general parametric specifications of 

heteroscedasticity. Note that the truncated normal distribution where both the pre-truncation mean 

and variance depend on the input level allows that the location (mean) and the shape (variance)of 

the inefficiency distribution can change as a function of inputs.  

This formulation of heteroscedastic inefficiency term implies that the expected value of 

inefficiency can be stated as (see Wang, 2002; Kumbhakar and Sun, 2013) 

,

( )
( 0)

( )

i
i i u i i

i

E u u



 

    
  

,     (47) 

where  

,

i
i

u i




    

and   and   are the density function and the cumulative distribution function of the standard 

normal N(0,1) distribution, respectively. The expected inefficiency is no longer a constant, but its 

dependence on inputs x has a well-defined functional form conditional on the parametric 

assumptions stated above. This allows us to both estimate the heteroscedasticity effects empirically, 

and take heteroscedasticity explicitly into account in the StoNED procedure. 

  

8.3 Stepwise StoNED estimation under heteroscedasticity 

To estimate the doubly-heteroskedastic model, we can adjust the stepwise StoNED routine 

presented in Section 5 as follows (a more detailed elaboration of each step follows below): 

 

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output ˆ ( ) ( )CNLS

i i ig E yx x . 

Step 2: Apply quasi-likelihood estimation to the CNLS residuals 
CNLS

i  to estimate the parameters 

of 
i , ,u i , and ,v i .  

Step 3: Adjust the conditional mean function by adding the expected inefficiency ,
ˆ ˆ( , , )i i i u iE u  x  to 

estimate the frontier for the observed data points using  

,
ˆ ˆ ˆ ˆ( ) ( ) ( , , )StoNED CNLS

i i i i i u if g E u   x x x .  

Then apply equation (5) to estimate the frontier min
ˆ ( )StoNEDf x  for unobserved points. 

Step 4: Apply JLMS method to estimate firm-specific inefficiency using the conditional mean 

ˆ( )CNLS

i iE u  . 

 

In step 1, we estimate the conditional mean function g(x). The CNLS estimator remains 

unbiased and consistent estimator of the conditional mean g, despite heteroscedastic composite 

error term (similar to OLS).
 
However, note that in the case of the doubly-heteroscedastic model  

( ) ( ) ( ) ( )i i i i i ig E y f E u  x x x x . 

Note that the shape of function g can differ from that of frontier f because ( )i iE u x  is a function of 

inputs x. We will take this into account in step 3 where we shift function g upward, not by a 
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constant  , but rather, by the estimated ( )i iE u x .
27

 It is also worth noting that function g is not 

necessarily monotonic increasing and concave even if the production function f satisfies these 

axioms because ( )i iE u x  can be a non-monotonic and non-concave function of inputs (note: there 

does exist parameter values for which ( )i iE u x  is indeed monotonic and concave in the domain of 

non-negative x). To apply CNLS in step 1, we need to assume that the curvature of the production 

function f dominates and that function g is monotonic increasing and concave (at least by 

approximation). Even if one assumes that f exhibits CRS, it is recommended to apply the VRS 

specification in step 1 to allow for the nonlinear effects of ( )i iE u x , and impose CRS later in step 3.  

Having estimated the parameters of the inefficiency and noise terms, it is possible to test if 

monotonicity and concavity assumptions of g hold. If g does not satisfy monotonicity and 

concavity, we can substitute CNLS by techniques depending on which axiom does not hold. 

Specifically, if the concavity assumption is violated, it is possible to apply isotonic nonparametric 

least squares (INLS) suggested by Keshvari and Kuosmanen (2013). Another possibility is to 

estimate order-q quantile frontier using either CNQR or CAWLS techniques introduced in Section 

6.4. Specifying the correct value for q will ensure that the quantile frontier inherits the monotonicity 

and concavity properties of frontier f even if the heteroscedastic inefficiency term is a non-

monotonic or non-convex function of inputs. Indeed, we do not insist on estimating the conditional 

mean in step 1, the conditional quantile is equally suitable.  

In step 2 it is natural to resort to the pseudolikelihood method since we utilize a rather heavily 

parametrized model of heteroscedasticity. As already noted in Section 5, a simple practical trick to 

conduct quasi-likelihood estimation is to use the standard ML algorithms available for SFA in 

standard software packages (e.g., Stata, Limdep, or R). In this case we specify the CNLS residuals 

ˆCNLS

i  as the dependent variable (i.e., the output) and a constant term as an explanatory variable 

(input), and the ML algorithm performs the quasilikelihood estimation. For example, the frontier 

modeling tools of Stata allows one to include “explanatory variables for technical inefficiency 

variance function (uhet)” and “explanatory variables for idiosyncratic error variance function 

(vhet)” if the distribution of inefficiency term is specified as half-normal or exponential. It is also 

possible to include covariates to the truncated normal specification of the inefficiency term, but in 

this specification the noise term is assumed to be homoscedastic. Hung-Jen Wang has developed a 

Stata package for the model described in Wang (2002), which can be used for estimating the model 

estimating the heteroscedasticity model described above.
28

 

Having estimated the underlying parameters of , ,, ,i u i v i   , it is recommended to apply 

standard specification tests available for ML (i.e., likelihood-ratio, Lagrange multiplier, or Wald 

test) to test restrictions β 0 , γ 0 , and ρ 0 . For example, if the null hypothesis of ρ 0  is not 

rejected, then the assumption of homoscedastic noise term can be maintained. Similarly, if 0 0  , 

β 0 , and γ 0 , then the model of heteroscedastic truncated normal inefficiency term reduces to a 

homoscedastic half-normal inefficiency term. If the specification tests provide evidence that some 

                                                 
27

 In the context of SFA, Kumbhakar and Lovell (2000) state strongly that the stepwise MOLS procedure cannot be 

used in the case of heteroscedastic inefficiency. They correctly note that the OLS estimator used in the first step yields 

biased estimates of not only the intercept but also the slope coefficients of the frontier. However, Kumbhakar and 

Lovell seem to overlook the possibility of eliminating the bias by shifting function g upward by a conditional 

expectation of inefficiency that depends on inputs x.    
28

 The Stata package is available from Wang’s homepage: http://homepage.ntu.edu.tw/~wangh/.  

http://homepage.ntu.edu.tw/~wangh/
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of the heteroscedasticity effects are not significant, we would recommend excluding those effects 

from the heteroscedasticity model and estimating step 2 again.  

One additional issue is in the context of linear regressionthat efficiency of the least squares 

estimator can be improved by applying weighted least squares or generalized least squares. Having 

estimated the firm specific 
, ,,u i v i  , it is possible to return back to step 1 and apply a weighted 

version of the CNLS estimator. Defining 2 2 2

, , ,
ˆ ˆ ˆ

i u i v i    , we can modify the objective function of 

the CNLS problem as  
2

2
1 ,

( )
min

ˆ

CNLSn
i

i i





  

maintaining the original constraints of (3). Interpreting the given 2

,
ˆ1/ i  as firm-specific weights, 

this weighted least squares formulation of CNLS is directly analogous to the generalized least 

squares (GLS) estimator of the linear regression model.
29

 However, as yet there is no evidence that 

the use of weighted least squares can improve efficiency of the CNLS estimator. Intuitively, the 

direct analogue with GLS would suggest that weighted least squares can be more efficient than the 

unweighted CNLS under heteroscedasticity. On the other hand, recall that CNLS approximates the 

underlying function g by a piece-wise linear curve. Since the hyperplane segments of the 

unweighted CNLS formulation provide local approximation, assigning larger or smaller weights to 

certain regions of the frontier may not have much effect on the piece-wise linear approximation. In 

our limited experience, introducing the weights 2

,
ˆ1/ i  does not necessarily have any notable impact 

on the results. Further, we need to be able to estimate 2

,i  with a sufficient precision. Overall, we 

are somewhat skeptical whether the possible benefit in terms of improved efficiency of the CNLS 

estimator can outweigh the cost of additional effort of conducting the weighted least squares 

estimation. This forms an interesting open question for future research.    

In step 3 we adjust the conditional mean function g estimated in step 1 (or alternatively, the 

conditional q-quantile) for the estimated expected inefficiency to estimate the frontier f. Note that 

the conditional mean ( )i iE u x  is no longer a constant, but a function that depends on inputs x. Using 

equation (47), we can write the estimated expected inefficiency as the function of inputs and 

parameter estimates as 

, ,

0 0
0 1

1 1

ˆ( )
ˆ ˆ ˆ ˆ( , , )
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x

β x β x
β x γ x

γ x γ x

 

This expression reveals that in the doubly-heteroscedastic model the expected value of inefficiency 

has a linear part originating from the mean 0i i   β x , and a nonlinear part driven by 

, 1exp( )u i i    γ x . Having estimated the parameters of the inefficiency term, it is useful to 

evaluate whether ˆ( )i iE u x  is monotonically increasing and concave within the observed range of 

inputs (e.g., plot the values of ˆ( )E u x  at different levels of x to visually inspect possible violations 

of monotonicity and concavity). To ensure that the estimated frontier function satisfies the 
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 Note that in the CNLS context we prefer to introduce weights to the objective function instead of applying variable 

transformations (as in GLS) because the monotonicity and concavity constraints must hold for the original input 

variables x.  
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postulated axioms despite minor violations of monotonicity and concavity (which may be just 

artifacts of the arbitrary parametric specification of the heteroscedasticity model), we apply the 

minimum extrapolation principle and utilize the DEA method stated in equation (5) to obtain the 

convex monotonic hull of the fitted values ˆ ( )StoNED

if x  of observations i=1,…,n, which yields the 

frontier estimator 
min
ˆ ( )StoNEDf x .   

In step 4, we can compute firm specific inefficiency estimates using the JLMS conditional 

mean ˆ( )CNLS

i iE u   using the firm specific parameter estimates , ,
ˆ ˆ ˆ, ,i u i v i   . Note that the expected 

inefficiency 
,

ˆ ˆ( , , )i i i u iE u  x  applied for shifting the conditional mean function g to estimate frontier 

f does not depend on the heteroscedasticity of the noise term. However, the JLMS efficiency does 

also depend on the heteroscedasticity of the noise term ,
ˆ

v i . Kumbhakar and Sun (2013) discuss this 

issue in more detail, showing that the marginal effect of inputs on the conditional JLMS efficiency 

also depend on the heteroscedasticity of the noise term.  

 

9. Directions for future research 

This chapter has provided an updated and elaborated presentation of the CNLS and StoNED 

methods. Bridging the gap between the established DEA and SFA paradigms, these methods 

represent a major paradigm shift towards a unified and integrated methodology of frontier 

estimation and efficiency analysis that has a considerably broader scope than the conventional DEA 

and SFA tools. This chapter did not only review previously published method developments and 

their extensions, but also presented some new innovations, including the first extension of the 

StoNED method to the general case of multiple inputs and multiple outputs, and the first detailed 

examination of how heteroscedastic inefficiency and noise terms can be modeled within the CNLS 

and StoNED estimation frameworks. 

We see CNLS and StoNED not only as the state of the art in axiomatic nonparametric frontier 

estimation and efficiency analysis under stochastic noise, but also a promising way forward. 

Kuosmanen and Kortelainen (2012) stated explicitly 12 promising avenues of future research on the 

StoNED methodology. In the following we will provide an updated version of a 12 point research 

program, indicating the work that has already been done as well as work that remains to be done.  

 

”1. Adapting the known econometric and statistical methods for dealing with heteroskedasticity, 

endogeneity, sample selection, and other potential sources of bias, to the context of CNLS and 

StoNED estimators.”  

In this chapter we presented the first detailed examination about the modeling of heteroscedasticity 

in the inefficiency and noise terms. Kuosmanen, Johnson and Parmeter (2013) examine the 

endogeneity problem from a novel perspective employing directional distance functions. Obviously, 

a lot of further work is needed in this area. Alternative models of heteroscedasticity as well as 

estimation techniques deserve careful attention. The convex nonparametric quantile regression and 

the convex asymmetrically weighted least squares methods discussed in Section 6.4 and the 

generalized least squares estimator discussed in Section 8.3 provide potential methods for modeling 

and testing heteroskedasticity. The use of instrumental variables in CNLS for modeling 

measurement errors, sample selection, and other types of endogeneity bias should be investigated.  

 

“2. Extending the proposed approach to a multiple output setting.” 
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In this chapter we also presented the first extension of the StoNED method to the general case of 

multiple inputs and multiple outputs using the directional distance function (see also Kuosmanen, 

Johnson and Parmeter, 2013). Further work is also needed in this area. Alternative representations 

of the joint production technology, including the radial input and output distance functions, should 

be investigated. The main challenge in modeling joint production is not the formulation of the 

mathematical programming problem for the CNLS estimator (the usual DEA problem) or 

deconvoluting the composite error term (the usual SFA problem). The main challenge is the 

probabilistic modeling of the data generating process in the case of joint production, involving 

multiple endogenous inputs and outputs. Kuosmanen, Johnson and Parmeter (2013) provides a 

useful starting point in this respect. 

 

“3. Extending the proposed approach to account for relaxed concavity assumptions (e.g., 

quasiconcavity).” 

Keshvari and Kuosmanen (2013) presented the first extension in this direction, applying isotonic 

regression that relaxes the concavity assumption of CNLS. This approach estimates a step function 

analogous to free disposable hull (FDH) in the middle of the data cloud. The insights of Keshvari 

and Kuosmanen could be useful for examining the intermediate cases between the non-convex step 

function and the fully convex CNLS, allowing one to postulate quasiconcavity or quasiconvexity in 

terms of some variables (e.g., inputs, or input prices in the estimation of the cost function). Many 

opportunities for future research exist in this direction. 

 

“4. Developing more efficient computational algorithms or heuristics for solving the CNLS 

problem.” 

Lee et al. (2013) is the first contribution in this direction. The algorithm developed in that paper 

first solves a relaxed CNLS problem containing an initial set of constraints, those that are likely to 

be binding, and then iteratively adds a subset of the violated concavity constraints until a solution 

that does not violate any constraint is found. We believe the computational efficiency can be 

improved considerably by clever algorithms and heuristics (see, e.g., Hannah and Dunson, 2013). 

This is an important avenue for future research in the era of “big data”. 

 

“5. Examining the statistical properties of the CNLS estimator, especially in the multivariate case.” 

Seijo and Sen (2011) and Lim and Glynn (2012) were the first to address this challenge, proving 

statistical consistency of the CNLS estimator in the general multivariate case under slightly 

different assumptions about the data generating process. Further research on both the finite sample 

properties (e.g., unbiasedness or bias, efficiency, mean squared error) and the asymptotic properties 

(e.g., rates of convergence, limiting distributions) under different assumption of the data generating 

process would be needed. In this respect, Groeneboom et al. (2001a,b) provide an excellent starting 

point. The statistical properties of the convex nonparametric quantile regression (CNQR) and the 

convex asymmetrically weighted least squares (CAWLS) methods introduced in Section 6.4 also 

deserve further research. 

 

“6. Investigating the axiomatic foundation of the CNLS and StoNED estimators.” 

CNLS regression builds upon the same axioms as DEA, and StoNED estimation applies the 

minimum extrapolation principle to obtain a unique frontier function that satisfies the postulated 

axioms. However, it would be compelling if the technology characterized by CNLS and/or StoNED 

could be stated rigorously from the axiomatic point of view as the intersection of all sets that satisfy 
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the stated axioms and satisfy axiom X. It remains unknown whether axiom X exists, and how it 

could be formulated explicitly.  

 

“7. Implementing alternative distributional assumptions and estimating the distribution of the 

inefficiency term by semi- or nonparametric methods in the cross-sectional setting.” 

In this chapter (Section 5.2) we have provided an extensive review of possibilities, including 

parametric and semi-parametric alternatives. In principle, the quasilikelihood method is applicable 

to any parametric specification of inefficiency distribution. The most promising way forward seems 

to be the nonparametric kernel deconvolution of the CNLS residuals, following the works by Hall 

and Simar (2002) and Horrace and Parmeter (2011). One challenge that remains is to adapt the 

JLMS conditional mean inefficiency to the semi-parametric setting where no parametric distribution 

is specified for the inefficiency term.  

 

“8. Distinguishing time-invariant inefficiency from heterogeneity across firms, and identifying 

inter-temporal frontier shifts and catching up in panel data models.” 

Kuosmanen and Kortelainen (2012) present a simple fixed effects approach to modeling panel data, 

assuming time-invariant inefficiency. In this chapter we considered the parallel random effects 

approach, following Eskelinen and Kuosmanen (2013). Ample opportunities for extending these 

basic techniques to more sophisticated semi-parametric models allowing for technical progress and 

time-varying inefficiency are available. Indeed, panel data models have been extensively studied 

both in general econometrics and in the SFA literature. Both the insights and practical solutions 

from panel data econometrics can be imported to the CNLS and StoNED framework.   

 

“9. Extending the proposed approach to the estimation of cost, revenue, and profit functions as well 

as to distance functions.” 

Kuosmanen and Kortelainen (2012) consider the estimation of cost function in the single output 

case under CRS. They made these restrictive assumptions because the cost function must be a 

concave function of input prices. However, if the standard convexity axiom of the production 

possibility set holds, then the cost function is a convex function of outputs. A challenge that 

remains is to formulate the CNLS problem such that we can estimate a function that is convex in 

one subset of variables (i.e., outputs), but concave in another subset of variables (i.e., input prices). 

Kuosmanen (2012) estimates a multi-output cost function using StoNED, but the input prices were 

excluded by assuming that all firms take the same input prices as given.  

 

“10. Developing a consistent bootstrap algorithm and/or other statistical inference methods.” 

An earlier version of Kuosmanen and Kortelainen (2012) proposed to adapt the parametric 

bootstrap method proposed by Simar and Wilson (2010) for drawing statistical inferences in the 

StoNED setting. However, the anonymous reviewers were not convinced that the proposed boostrap 

method is necessarily consistent when applied to the CNLS residuals. Indeed, one should be wary 

of naïve bootstrap and resampling approaches that produce invalid and misleading results. Since 

Kuosmanen and Kortelainen were not able to prove consistency of Simar and Wilson’s bootstrap 

procedure in the CNLS case, the suggestion was excluded from the published version. We stress 

that adapting one of the known variants of the bootstrap method to the context of CNLS and 

StoNED would be straightforward. The challenge is to prove that the chosen version of bootstrap 

method is consistent under the stated assumptions about the data generating process. Another 

promising approach is to test if CNLS estimates differ significantly from the corresponding 
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estimates obtained using parametric methods (see Sen and Meyer, 2013). As for the contextual 

variables, Johnson and Kuosmanen (2012) prove that conventional inference techniques from linear 

regression analysis (e.g., t-tests, p-values, confidence intervals) can be applied for the parametric 

part (i.e., the coefficients of the contextual variables). 

 

“11. Conducting further Monte Carlo simulations to examine the performance of the proposed 

estimators under a wider range of conditions, and comparing the performance with other semi- and 

nonparametric frontier estimators.” 

Several published studies provide Monte Carlo evidence on the finite sample performance of CNLS 

and StoNED estimators. Kuosmanen (2008) and Kuosmanen and Kortelainen (2012) provide the 

first simulation results for CNLS and StoNED, respectively, focusing on the precision in estimating 

the frontier production function f. Johnson and Kuosmanen (2011) present MC simulations 

regarding the estimation of the parametric δ representing the effect of a single contextual variable z 

that may be correlated with input x. Andor and Hesse (in press) provide an extensive comparison of 

the performances of DEA, SFA, and StoNED, mainly focusing on the estimation of the firm 

specific inefficiency ui. However, note that all estimators considered are inconsistent in the noisy 

setting considered because ui is just a single realization of a random variable. Kuosmanen, 

Saastamoinen and Sipiläinen (2013) compare performances of DEA, SFA and StoNED in terms of 

estimating a frontier cost function. They calibrate their simulations to match the empirical 

characteristics of the Finnish electricity distribution firms. Their simulations demonstrate that if the 

premises stated by the Finnish energy regulator hold, then the StoNED estimator has superior 

performance compared to its restricted special cases, DEA and SFA. As for further research, it 

would be interesting to compare performance of CNLS and StoNED with those of other semi- and 

nonparametric frontier estimation techniques such as kernel regression and local maximum 

likelihood.     

 

“12. Applying the proposed method to empirical data, and adapting the method to better serve the 

needs of specific empirical applications.”  

The first published application of the StoNED method was Kuosmanen and Kuosmanen (2009), 

who estimated the production function from the data of 332 Finnish dairy farms in order to assess 

sustainability performance of farms. Subsequently, there have been several applications in the 

energy sector, both in production and distribution of electricity. Mekaroonreung and Johnson (2012) 

applied StoNED to estimate the shadow prices of SO2 and NOx from the data of U.S. coal-fired 

power plants. Thus far, the most significant real-world application of StoNED has been the study by 

Kuosmanen (2012) [see also Kuosmanen, Saastamoinen and Sipiläinen (2013), Dai and Kuosmanen 

(2014), and Saastamoinen and Kuosmanen (2014)]. Based on the results of this study, the Finnish 

energy market regulator adopted the StoNED method in systematic use in the regulation of the 

Finnish electricity distribution industry, with the total annual turnover of more than €2 Billion. 

Another real-world application of StoNED is Eskelinen and Kuosmanen (2013), who assessed inter-

temporal performance of sales teams using monthly data of Helsinki OP-Pohjola Bank, in close 

collaboration with the central management of the bank. The results and insights gained in this study 

were communicated to the team managers and were utilized for setting performance targets for sales 

teams. These empirical applications illustrate the flexibility and adaptability of the StoNED 

methodology to suit the specific needs of the application. The applications also provide motivation 

for developing further methodological extensions to meet the requirements of future applications. 
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In conclusion, we hope the 12-point program discussed above might inspire future 

methodological research along the lines described or along new avenues that have escaped our 

attention. We also hope that the methodological tools currently available would find inroads to 

empirical applications. In our experience from both Monte Carlo simulations and real empirical 

applications, CNLS and StoNED has proved dependable, reliable and robust, with an ability to 

produce results and insights that could not be found using the conventional methods.  
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