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Abstract: 

Standard axioms of free disposability, convexity and constant returns to scale employed in Data 

Envelopment Analysis (DEA) implicitly assume continuous, real-valued inputs and outputs. 

However, the implicit assumption of continuous data will never hold with exact precision in real 

world data. To address the discrete nature of data explicitly, various formulations of Integer DEA 

(IDEA) have been suggested. Unfortunately, the axiomatic foundations and the correct 

mathematical formulation of IDEA technology has caused considerable confusion in the literature. 

This chapter has three objectives. First, we re-examine the axiomatic foundations of IDEA, 

demonstrating that some IDEA formulations proposed in the literature fail to satisfy the axioms of 

free disposability of continuous inputs and outputs, and natural disposability of discrete inputs and 

outputs. Second, we critically examine alternative efficiency metrics available for IDEA. We 

complement the IDEA formulations for the radial input measure with the radial output measure and 

the directional distance function. We then critically discuss the additive efficiency metrics, 

demonstrating that the optimal slacks are not necessarily unique. Third, we consider estimation of 

the IDEA technology under stochastic noise, modeling inefficiency and noise as Poisson distributed 

random variables.  
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* Abbreviations of key concepts referred to in this chapter: DEA = Data Envelopment Analysis,  DMU = Decision 

Making Unit, CNLS = Convex Nonparametric Least Squares,  IDEA = Integer DEA, MILP = Mixed Integer Linear 

Programming,  RTS = Returns To Scale,  SFA = Stochastic Frontier Analysis,  StoNED = Stochastic Nonparametric 

Envelopment of Data.  

 

Abbreviations of articles frequently cited in this chapter: KJM = Kuosmanen, Johnson and Saastamoinen (in this 

volume),  KKM = Kuosmanen and Kazemi Matin (2009), KMK = Kazemi Matin and Kuosmanen (2009),  KSM = 

Khezrimotlagh, Salleh, and Mohsenpour (2012, 2013a, 2013b), LV = Lozano and Villa (2006, 2007).  
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1. Introduction 

Data envelopment analysis (DEA, Charnes et al., 1978) is an axiomatic, mathematical programming 

approach to assessing efficiency of decision making units (DMUs).
1
 DEA does not assume any 

particular functional form for the frontier, but relies on the axioms of production theory, most 

importantly, free disposability, convexity, and some specification of returns to scale (i.e., variable, 

non-increasing, non-decreasing, or constant). The standard axioms of free disposability, convexity 

and constant returns to scale employed in DEA implicitly assume continuous, real-valued inputs 

and outputs. In contrast, input-output data used in applications are always discrete because the 

precision of measurement is necessarily restricted to a limited number of decimal digits. Therefore, 

the implicit assumption of continuous data will never hold with exact precision in real world data.  

From a practical point of view, this is not a problem if the observed discrete data can be 

meaningfully approximated by continuous variables. For example, if the labor input is measured by 

the number of hours worked, rounded to the nearest integer, and the measured input varies between 

1,000 hours and 100,000 hours across evaluated DMUs, then the continuous approximation of the 

discrete data of labor input is perfectly valid as the possible rounding error is small (at most 0.1%) 

relative to the measured input. In contrast, if the labor input is the number of workers performing 

certain function (e.g., firm managers, university professors, hospital physicians), and the DMUs 

under evaluation are small, the rounding error can become a significant issue. For example, 

Kuosmanen and Kazemi Matin (2009) consider efficiency analysis of university departments where 

the number of professors and the number of published articles are examples of integer valued input 

and output variables. Suppose a university department currently has three professors. Suppose 

further that the conventional DEA analysis suggests the efficient level of professors is 2.7. How 

should this result be interpreted? If we round up the efficient number of professors to 3, then the 

evaluated DMU will appear as efficient, even though the DEA analysis indicates input efficiency of 

90 percent. However, rounding the input target downwards to 2 may result as an infeasible solution. 

Since the conventional DEA implicitly assumes all inputs and outputs to be real-valued, the 

estimated DEA frontier does not necessarily provide meaningful reference points if one simply 

rounds the input or output targets to the nearest whole number. 

                                                 
1
 We will henceforth use the term “DMU” to refer to any entity that transforms inputs to output, including both non-

profit firms and for-profit companies. DMU can refer to a production plant, facility, or sub-division of a company, or to 

an aggregate entity such as an industry, a region, or a country. 
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Lozano and Villa (2006, 2007) (henceforth LV) were the first to address this issue explicitly 

in DEA.
2
 They proposed to estimate the production possibility set as the intersection of the standard 

DEA technology and the set of non-negative integers. Unfortunately, they did not provide any 

theoretical justification for their integer DEA (henceforth IDEA) technology, even though it is 

obvious that the proposed technology does not satisfy the standard axioms of free disposability or 

convexity. To address this problem Kuosmanen and Kazemi Matin (2009) (henceforth KKM) 

introduced two new axioms of natural disposability and natural divisibility. Imposing the classic 

additivity axiom (Koopmans 1951), KKM proved that LV’s constant returns to scale (CRS) 

technology has a sound axiomatic foundation. Specifically, they showed that the IDEA technology 

is the smallest set that contains all observed data points and satisfies the axioms of additivity, 

natural disposability, and natural divisibility. Subsequent paper by Kazemi Matin and Kuosmanen 

(2009) (henceforth KMK) extended the result to the variable returns to scale (VRS) case, 

introducing the axiom of natural convexity.  

Another contribution of LV is the development of a mixed integer linear programming 

(MILP) DEA formulation to measure efficiency of DMUs relative to the IDEA technology using 

Farrell’s (1957) radial input-oriented measure. KKM argue that the classic Farrell measure needs to 

be modified in the context of integer-valued input-output data, and propose to measure efficiency as 

the radial distance to the monotonic hull of the IDEA technology. They further argue that LV’s 

MILP formulation over-estimates efficiency, and they demonstrate their argument by means of a 

numerical example and an application.   

Following the pioneering works by LV and KKM, a number of extensions and applications of 

integer DEA have been published (see, e.g., Wu et al. 2009; 2010; Lozano et al. 2011; Kazemi 

Matin and Emrouznejad, 2011; Alirezaee and Sani 2011; Chen et al., 2012; Du et al., 2012; Nöhren 

and Heinzl, 2012; Lozano, 2013; Chen et al., 2013). We will survey the extensions and applications 

in more detail Section 8 of this chapter.  

Unfortunately, the axiomatic foundation and the MILP formulation of integer DEA have also 

caused serious confusion since the original works by LV. Recently, a series of papers by 

Khezrimotlagh, Salleh, and Mohsenpour (2012, 2013a, 2013b) (henceforth KSM) have contributed 

to further confusion by discrediting the contributions of KKM and disregarding both the importance 

of a sound axiomatic foundation and rigorous mathematical formulations. While the bogus critique 

by KSM is not worth serious consideration, the naïve mistakes of KSM provided us some further 

                                                 
2
 Previous studies such as Banker and Morey (1986), Kamakura (1988), and Rousseau and Semple (1993) (among 

others) consider inputs and outputs measured on the categorical or ordinal scale, which are obviously integer valued. 

However, input-output variables defined on the interval or ratio scales can be integer valued as well.  
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motivation to elaborate our arguments and shed some new light on the intimate connection between 

the axioms of production theory and the implementation through MILP.   

The purposes of this chapter are three-fold. First, we re-examine the axioms and MILP 

formulations of integer DEA, elaborating some aspects that have apparently caused confusion in the 

literature. Emphasizing the importance of the axiomatic foundation, we demonstrate that LV’s 

MILP formulations fail to satisfy the axioms of free disposability of continuous inputs and outputs, 

and natural disposability of discrete inputs and outputs. We illustrate the inconsistency of LV’s 

MILP formulation with the IDEA technology they suggested through detailed numerical examples, 

which demonstrate the differences between the LV’s formulation and those developed by KKM and 

KMK.  

Second, we critically examine alternative efficiency metrics available for integer DEA. We 

complement the MILP formulations for the radial input oriented Farrell (1957) measure proposed 

by KKM and KMK with the radial output oriented measure, and the general directional distance 

function (Chambers et al., 1996, 1998). We then critically discuss the additive efficiency metrics 

considered by LV (2007), demonstrating that the optimal slacks are not necessarily unique. The 

same problem applies to the range adjusted additive measure proposed by Cooper et al. (1999). The 

non-uniqueness of slacks can make the application of the slack based measure by Tone (2001) 

problematic in the context of integer DEA.   

Third, attributing all deviations from the frontier to inefficiency, ignoring stochastic noise, is 

generally recognized as the main limitation of DEA (see Kuosmanen, Johnson and Saastamoinen, in 

this volume, (henceforth KJM) for a review of recent advances in modeling noise). To address this 

shortcoming, we examine the estimation of the IDEA technology in the single output setting under 

stochastic noise. Modeling inefficiency and noise as Poisson distributed random variables, we 

outline the first extension of stochastic nonparametric envelopment of data (StoNED) approach by 

Kuosmanen and Kortelainen (2012) to discrete output variables.  

The rest of this chapter is organized as follows. Section 2 introduces and discusses the axioms 

for a DEA problem with integer-valued inputs and outputs. Section 3 derives the associated DEA 

production sets that satisfy the fundamental minimum extrapolation principle,
3
 and generalize the 

method to the hybrid case where both real and integer valued inputs and outputs are present. Section 

4 modifies the Farrell input efficiency measure to the integer DEA setting, and show how the 

efficiency score can be computed by solving a MILP problem. Section 5 discusses new 

developments on integer DEA and some extensions. Section 6 presents concluding discussion with 

                                                 
3
 The minimum extrapolation principle was formally introduced by Banker et al. (1984), but formal minimum 

extrapolation theorems (and proofs) date back at least to Afriat (1972).  
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some potential avenues for future research. The paper includes several theorems: proofs of all 

theorems and lemmas are presented in the Appendix. 

 

2. Axioms 

The axiomatic approach to constructing production possibility sets as a combination of observed 

activities has a long history in economics, dating back at least to Von Neumann (1945-1956) and 

Koopmans (1951). Afriat (1972) was the first to prove the minimum frontier production functions 

that envelop all observed data and satisfy the following sets of axioms: i) free disposability, ii) 

convexity and free disposability, and iii), CRS, convexity and free disposability. Banker et al. 

(1984) extended Afriat’s result to the multi-output production possibility sets, and formally 

introduced the fundamental minimum extrapolation principle.  

Multi-output production technology can be generally characterized by the production 

possibility set   defined as  

 

  {(   )|    
                  

 },  

 

where x is a m-dimensional vector of input quantities and y is a s-dimensional vector of output 

quantities.
4
 Intuitively, the set T can be understood as a list of feasible input-output combinations. 

Even if we restrict to discrete or integer valued input-output vectors, in general, there are infinitely 

many feasible input-output vectors, which makes the list infinitely long. It is worth emphasizing 

that, in many applications, the production possibility set T is interpreted as the benchmark 

technology that forms a reference for performance comparisons and efficiency analysis. In this 

interpretation, the boundary of set T characterizes standards for good performance, not only the 

production possibilities from the strictly technical point of view.    

Observed DMUs are characterized by a pair of non-negative input and output vectors (     ) 

    {     }. Conventional DEA approaches implicitly assume that all inputs and outputs are 

continuous, real-valued variables. However, observed data are always discrete as the number of 

decimal digits is necessarily finite. This forms the motivation for integer DEA. Note that any 

discrete data that cannot be meaningfully approximated as continuous data can easily be converted 

to integers by a simple multiplicative transformation. Suppose, for example, that a continuous 

output variable is measured at the precision of one decimal digit (e.g., 0, 0.1, 0.2, …), but rounding 

the DEA targets to the nearest decimal digit seems problematic for one reason or another. This 

                                                 
4
 For clarity, we denote vectors by bold lower case letters (e.g., x) and matrices by bold capital letters (e.g., X). 
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discrete output variable can be harmlessly multiplied by factor 10 (amounting to a change of units 

of measurement), which results as an integer valued output variable.      

In the following we will focus on integer-valued inputs and outputs (   )    
   , which lead 

us to integer DEA (IDEA) introduced by LV. In the following sub-sections we will adapt the classic 

axioms of DEA to allow for integer valued inputs and outputs, following KKM and KMK.   

 

2.1 Free disposability and natural disposability 

Free disposability is an intuitive and widely used axiom. It is closely related to monotonicity of 

functional representations of technology: free disposability implies that the production function is 

monotonic increasing in inputs and the cost function is monotonic increasing in outputs. It is 

possible to assess efficiency relying solely on the free disposability axiom, using the free disposable 

hull (FDH) method (Deprins et al., 1984; Tulkens, 1993). However, free disposability is not always 

a meaningful axiom. For example, if the output vector y includes undesirable outputs (bads) such as 

waste or pollution, the free disposability axiom can be replaced by the weak disposability axiom.
5
 

Free disposability is also relaxed for modeling congestion.
 6

 

The axiom of free disposability is conventionally stated as follows: 

 

(A1) Free disposability: (   )    and (   )    
   ,       (       )   . 

 

This axiom states that it is always possible to produce less output with a given level of inputs, or 

alternatively, use more inputs to produce the same amount of output. Vector u can be interpreted as 

the amount of excess inputs used, and vector v represents the foregone output. If we interpret this 

axiom literally, it seems impossible to consume infinite amounts of inputs in a finite production 

process. Hence axiom (A1) is not necessarily valid from a strictly technical point of view. However, 

it does have a compelling economic interpretation: (A1) essentially states that inefficient production 

(in the sense of Koopmans, 1951) is feasible. Stated differently, if our objective is to assess 

technical efficiency in the sense of Koopmans (1951), and we interpret T as a benchmark 

technology rather than as a list of technically feasible points, then (A1) is a completely harmless 

axiom irrespective of whether it is technically feasible or not.     

                                                 
5
 The correct way of implementing weak disposability in DEA has caused some confusion in the literature: see 

Kuosmanen (2005), Färe and Grosskof (2009), Kuosmanen and Podinovski (2009), and Podinovski and Kuosmanen 

(2011) for an interesting debate on this issue.  
6
 This is another issue that has caused confusion: see Cherchye et al. (2001).  
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Axiom (A1) implies continuity. Clearly, if this axiom holds, then there are feasible real-

valued input-output vectors (   )    that are not included in   
   . Stated conversely, if the 

production possibility set T contains only integer-valued input-output vectors, then it cannot satisfy 

the standard free disposability axiom. Therefore, it is necessary to adapt this axiom to be consistent 

with integer-valued inputs and outputs. KKM propose the following axiom: 

 

(B1) Natural disposability: (   )    and (   )    
   ,      (       )   . 

 

The economic rationale of axiom (B1) is exactly the same as that of the standard free disposability 

axiom (A1): inefficient production is feasible. However, (B1) only allows for integer-valued 

disposal of outputs through vector v and integer-valued excess inputs through vector u. Therefore, 

axiom (B1) is a suitable counterpart of (A1) that applies for integer valued inputs and outputs. 

 

2.2 Convexity and natural convexity 

The classic DEA approaches (Farrell, 1957; Charnes et al., 1978; Banker et al., 1984) impose 

convexity in addition to free disposability. The standard convexity axiom can be stated as follows: 

 

(A2) Convexity: (   ) (     )    ( ̃  ̃)   (   )  (   )(     )         ( ̃  ̃)   . 

 

This axiom states that convex combinations of observed DMUs are always feasible. The weights 

assigned to the observations are characterized by parameter  . In general, we can form convex 

combinations of all n observations in J using a n-dimensional parameter vector  . 

Convexity does not necessarily have a strong justification from the strictly technical point of 

view, but it is a fundamental axiom in economic theory. For example, convexity is critically 

important for establishing duality results between alternative representations of technology 

(Shephard, 1970; Färe and Primont, 1995). For example, if the profit function of a firm is known, 

we can always recover the convex hull of its production possibility set T (see Kuosmanen, 2003, for 

details). If we interpret T as a benchmark technology for competitive profit maximizing firms that 

take prices as given, then convexity is an equally harmless axiom as free disposability. However, if 

we consider nonprofit firms or monopolistic competition, convexity may be a restrictive assumption 

as it assumes away economies of scale (see, e.g., Kuosmanen, 2001). Weaker forms of quasi-

convexity (i.e., convex input or output sets) have also been considered in the DEA literature (e.g., 

Petersen, 1990; Bogetoft, 1996; Bogeoft et al., 2000; Post, 2001).     
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Clearly, if axiom (A2) holds, then there are feasible real-valued input-output vectors (   )  

  that are not integer-valued. Conversely, if the production possibility set T contains only integer-

valued input-output vectors, then it violates convexity. Therefore, it is necessary to adapt this axiom 

to be consistent with integer-valued inputs and outputs. KMK propose the following axiom: 

 

(B2) Natural convexity: (   ) (     )    ( ̃  ̃)   (   )  (   )(     )            

( ̃  ̃)    
      ( ̃  ̃)   .  

 

Analogous to the pair of axioms (A1) and (B1), the rationale of axiom (B2) is to adapt (A2) to the 

context of integer-valued inputs without changing its meaning. Note that (B2) only adds to (A2) the 

requirement that ( ̃  ̃)    
   , that is, the resulting convex combination must itself be integer-

valued. Note that KMK allow the weights   used for forming convex combinations to be real 

valued. They do not see a problem in using real valued numbers in the mathematical operations 

involved in the axioms as far as the resulting input-output vectors are integer-valued.  

KSM (2012) criticize KMK for the use of real valued weights   for forming convex 

combinations.
7
 They propose to substitute weights   in (B2) by the ratio    , such that    , 

      
    . Mathematically, this restricts the domain of weights   from the real numbers to the 

set of rational numbers. Therefore, the alternative axiom proposed by KSM does not expand the 

production possibility set, it can only contract it. In fact, we can prove the following: 

 

Lemma 1:  Assume Axiom (B2) is satisfied. Then for any given (   ) (     )   , if there exists a 

real valued   such that ( ̃  ̃)   (   )  (   )(     )   , then there exist integers     

  
   ,    , such that  

      .  

 

This lemma shows that the alternative convexity axiom proposed by KSM makes no 

difference whatsoever. If one finds the axiom by KSM more aesthetic or elegant, one can 

harmlessly use it, without a need to revise the theory developed by KKM. However, for the sake of 

intuition and transparency, we prefer to maintain a close connection between the axioms for real 

valued and integer valued variables (i.e., axioms A and axioms B). Since there is no real benefit 

                                                 
7
 KSM (2012) state: ”Now, if it has been supposed that only the integer numbers set is considered, then it should not 

have been used the real number variable in the integer axioms! In fact, a new axiom must not have any doubts or 

parallel affects with those previous axioms. In other words, an axiom is an evident premise as to be accepted as true 

without controversy.” This discussion reveals that KSM do not understand the economic meaning of axioms in DEA. In 

fact, none of the standard DEA axioms can meet the requirements of KSM.   



9 

 

from restricting the domain of weights   from the set of real numbers to the set of rational numbers, 

this is only a matter of subjective preference. In this light, the claims about “major shortcomings” 

that KSM repeatedly express in their papers are completely irrational.  

 

2.3 Returns to scale 

Returns to scale concerns radial contraction or expansion of all inputs and outputs by the same 

factor. Note that if no axioms concerning returns to scale are imposed, then the technology is said to 

exhibit variable returns to scale (VRS). To implement VRS in DEA, the weights   employed for 

forming convex combinations of observed DMUs must sum to one (i.e.,  ∑   
 
     ). When 

further axioms concerning returns to scale are imposed, this constraint can be relaxed. 

Consider first the radial contraction possibilities. The conventional axiom of non-increasing 

returns to scale (NIRS) can be stated as follows:  

 

(A3) Non-increasing returns to scale: (   )    and       (     )   . 

 

This axiom allows one to scale down any observed input-output vector by factor  . Note that axiom 

(A3) implies that inactivity is feasible: the origin (0,0) is included in the production possibility set T 

because, starting from any observed (   ), we can set factor   = 0. If we simply insert the origin 

(0,0) as one of the observed points in the data set, then the variable returns to scale DEA technology 

will automatically satisfy axiom (A3). This provides an implicit way of implementing NIRS, which 

may be useful in some context (see Kuosmanen, 2005). A more standard way of implementing 

NIRS in DEA is to set a constraint that the sum of intensity weights must be less than or equal to 

one (i.e.,  ∑   
 
     ).    

Clearly, even if we start from an inter-valued input-output vector (   )    
   , the rescaled 

vector (     ) is not necessarily integer valued. Therefore, axiom (A3) is not directly applicable 

for integer DEA. KKM propose to modify axiom (A3) as 

 

(B3) Natural divisibility: (   )    and       and (     )    
    (     )   . 

 

Natural divisibility simply introduces an additional restriction that the downward rescaled version 

of the original input-output vector must result as an integer valued production plan to be feasible.  
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Consider next the radial expansion. The conventional axiom of non-decreasing returns to 

scale (NDRS) can be stated as follows:  

 

(A4) Non-decreasing returns to scale: (   )    and     (     )   . 

 

This axiom allows for radial expansion of any observed input-output vector away from the origin by 

factor    . The NRDS axiom is implemented in DEA by enforcing the sum of intensity weights 

to be greater than or equal to one (i.e.,  ∑   
 
     ).    

Obviously, the rescaled vector (     ) does not have to be integer valued. Therefore, KMK 

propose to adapt this axiom for integer DEA as 

 

(B4) Natural augmentability: (   )    and     and (     )    
    (     )   . 

Natural augmentability requires that the radial expansion must result as an integer valued input-

output vector in order to be feasible.  

Note that in both (B3) and (B4), KMK assume a real-valued multiplier  . In both cases, we 

could equally well express   as a ratio of two integers.  

 

Lemma 2: For any given (   )   , if there exists a real valued   such that (     )   , then 

there exist integers       
   ,    , such that  

      .  

 

This result again shows that the alternative formulations of the KMK axioms suggested by KSM do 

not make any practical difference whatsoever.  

Finally, if both (A3) and (A4) hold, then the technology is said to satisfy constant returns to 

scale (CRS): 

 

(A5) Constant returns to scale: (   )    and     (     )   . 

 

In the CRS case, the sum of intensity weights   is unrestricted. Observe that imposing additional 

axioms on returns to scale implies less restrictive constraints for the intensity weights  , which 

leads to the expansion of the estimated production possibility set. 

From a strictly technical point of view, the CRS axiom appears totally unrealistic. However, it 

does have compelling economic justification in many applications. If the objective of the firm is to 
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maximize profitability (i.e., the ratio of revenue to cost) at given prices, then the CRS axiom is 

completely harmless (see Kuosmanen et al., 2004; Lemma 1). 

KMK did not introduce an integer equivalent of (A5): note that if both (A3) and (A4) hold, 

then (A5) holds. The converse is also true. Therefore, the CRS case is obtained in integer DEA by 

imposing (B3) and (B4). For the sake of completeness, we can state the integer version of (A5) as  

 

(B5) Natural radial rescaling: (   )    and     and (     )    
    (     )   . 

 

In fact, KKM examine the CRS case in detail, imposing the axiom of additivity (adopted from 

Koopmans, 1951) in addition to natural divisibility (B3). 

 

 (A6) Additivity: (   ) (     )     (         )   .  

Since axiom (A6) was first introduced in the context of continuous variables, we label it as type-A 

axiom. Note, however, that the additivity axiom does not require or imply continuity, and hence it 

applies equally well to integer valued inputs and outputs. Interestingly, we can build the IDEA 

technology under CRS to the axioms of additivity and natural divisibility axioms, as shown by the 

following result: 

 

Lemma 3: If the axioms (B2) Natural convexity and (B5) Natural radial rescaling are satisfied, 

then the axioms of (B3) Natural divisibility and (A6) Additivity must also hold. Conversely, if 

axioms (B3) and (A6) are satisfied, then axioms (B2) and (B5) must also hold. In other words, 

these two pairs of axioms are equivalent in the following sense:       

[(B2) and (B5)] ⇔ [(B3) and (A6)] . 

 

2.4 Envelopment 

In addition to the standard axioms of production theory (e.g., Shephard, 1970; Färe and Primont, 

1995), the classic DEA article by Banker et al. (1984) imposes the following axiom: 

 

(E1) Envelopment: all observed data points (     ) are feasible: (     )        . 

 

For clarity, we label this assumption as type-E postulate, as (E1) not really an axiom in the same 

sense as (A1) – (A6) and (B1) – (B5) considered above. Note that all axioms introduced before are 

conditional statements expressed using   (i.e., if condition “A” holds, then “B” is feasible). In 
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contrast, (E1) is an unconditional statement about the observed data. In our interpretation, the 

minimum extrapolation principle together with (E1) form the estimation principle of DEA 

analogous to the minimization of least squares or the maximization of the log-likelihood function in 

regression analysis.      

From the strictly technical sense, (E1) is a natural and intuitive axiom: if point (     ) is 

observed, then it clearly must be feasible. One could argue that this axiom is proved by empirical 

evidence.  

However, the fact that (     ) is observed once does not necessarily guarantee that DMU j 

can replicate (     ) again in the future, or that other DMUs can achieve the point (     ). In many 

applications of efficiency analysis, production process is subject to uncontrollable random elements, 

including technological risks (e.g., machine failure). There are also economic risks (e.g., variation 

in demand and input-output prices), and risks related to the operating environment (e.g., 

competition, regulation, weather conditions). In practice, DEA can handle a limited number of input 

and output variables,
8
 and hence one often needs to either omit some relevant inputs or outputs, or 

resort to aggregated inputs and outputs (e.g., monetary cost or revenue aggregates) that are subject 

to errors of aggregation. While DEA implicitly assumes homogenous DMUs that operate in a 

homogenous environment, in reality, evaluated DMUs tend to be heterogenous and operate in 

heterogenous environments. The random variations, omitted variables, data errors, and 

hetereogeneity are some of the possible reasons for why the envelopment condition (E1) is not valid 

in applications.  

The recent works by Kuosmanen (2008), Kuosmanen and Johnson (2010), and Kuosmanen 

and Kortelainen (2012) demonstrate that it is possible to relax the envelopment condition (E1), and 

estimate production technologies subject to some of the axioms (A1) – (A6) in a nonparametric or 

semi-nonparametric fashion (see KJM for a review). We consider the CNLS (convex nonparametric 

least squares) and StoNED (stochastic nonparametric envelopment of data) developed in these 

papers a promising way forward. An extension of StoNED method to IDEA technology will be 

developed in Section 6. To pave a way for the stochastic extension, we will maintain the assumption 

(E1) in Sections 3 – 5.  

To summarize this section, Table 1 lists the axioms considered, indicating the standard 

axioms (A1) – (A5) that imply continuity and the corresponding axioms (B1) – (B5) for discrete, 

integer-valued variables, and the other axioms / conditions. 

                                                 
8
 DEA is a nonparametric estimator subject to the curse of dimensionality. This implies that the precision of DEA 

estimator deteriorates rapidly as the number of input and output variables increases. Also the discriminating power of 

DEA is affected: when the dimensionality is large, almost all DMUs appear as inefficient. 



13 

 

 

Table 1: Axioms considered in this paper 

Axioms that imply continuity Corresponding axioms for discrete variables 

(A1)  Free disposability (B1) Natural disposability 

(A2) Convexity (B2) Natural convexity 

(A3) Non-increasing returns to scale (B3) Natural divisibility 

(A4) Non-decreasing returns to scale (B4) Natural augmentability 

(A5) Constant returns to scale (B5) Natural radial rescaling 

Other axioms / conditions   

(A6) Additivity   

(E1)  Envelopment   

3. Continuous, integer-valued and hybrid DEA technologies  

Having introduced the axioms, we will next examine the continuous and integer-valued DEA 

estimators of the production possibility set T, and a hybrid case where some inputs and outputs are 

integer-valued while others are continuous.  

Applying the fundamental minimum extrapolation principle, any DEA technology can be 

constructed as the intersection of such sets     
    that contain all observed DMUs (E1) and 

satisfy the stated axioms (Banker et al. 1984). In the case of continuous input-output variables, the 

DEA estimator of the production possibility set T can be stated as 

 

    
     {(   )    

      

subject to 

  ∑     
 
   ; 

  ∑     
 
   ; 

      }, 

 

where      denotes the generic domain of intensity weights under alternative RTS specifications. 

Specifically,      can be specified by choosing one of the four options below:  

 

     {∑   
 
          }  

      {∑   
 
          }  

      {∑   
 
          }  
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     {   }  

 

This generic domain allows for alternative specifications of RTS known in the DEA literature. The 

connection to the axioms introduced in Section 2 is the following. Under axioms (A1) + (A2), we 

have the VRS specification     . Axioms (A1) + (A2) + (A3) imply the NIRS specification      , 

while axioms (A1) + (A2) + (A4) imply the NDRS specification      . Under axioms (A1) + (A2) 

+ (A5), we have the CRS specification     .  

Banker et al. (1984) formally show that set     
    satisfies the envelopment condition (E1) and 

the stated axioms, and that     
    is the intersection of all such sets that satisfy those axioms. In this 

sense,     
     is the smallest set that satisfies the stated axioms.

9
 Note that the axiom of convexity is 

implemented through the use of intensity weights    (compare with axiom (A2)), which allow for 

any convex combination of observed DMUs. Restricting weights    to be integers relaxes the 

convexity axiom (A2), leading to the free disposable hull (Deprins et al., 1984) and free replicable 

hull (Tulkens, 1993) technologies. The axiom of free disposability is implemented through the 

inequality constraints for inputs and outputs. Replacing the inequality constraints by strict equality 

would relax the free disposability axiom (A1), leading to the DEA formulations of weak 

disposability (e.g. Kuosmanen 2005) and congestion (e.g. Cherchye et al. 2001).  

In the case of integer-valued inputs and outputs, the generic IDEA technology first proposed 

by LV can be similarly stated as 

 

     
     {(   )    

      

subject to 

  ∑     
 
   ; 

  ∑     
 
   ; 

      }, 

 

where      is the generic domain of intensity weights under alternative RTS specifications 

introduced above. In the case of the IDEA technology, axioms (B1) + (B2) imply the VRS 

specification     . Under axioms (B1) + (B2) + (B3) we have the NIRS specification      , and  

axioms (B1) + (B2) + (B4) imply the NDRS specification      . Finally, the CRS specification 

     is obtained under axioms (B1) + (B2) + (B5). 

                                                 
9
 In the single output case, Afriat (1972) proves the similar minimum extrapolation result for the smallest production 

function satisfies axioms (A1), (A1) + (A2), or (A1) + (A2) + (A5). 
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Comparing the sets      
    and     

   , it is obvious that      
        

   . LV correctly note that  

 

     
        

      
   .  

 

In words, IDEA technology is the intersection of the set of integer vectors and the conventional 

DEA technology, and the latter set is further an intersection of all such sets that satisfy (E1), (A1), 

(A2), and the specified RTS axioms. However, it is easy to see that      
    itself does not satisfy any 

of the axioms (A1) – (A4). This is the reason why KKM criticized LV for the lack of axiomatic 

foundation. It is not enough that a benchmark technology is an intersection of some arbitrary sets: 

the minimum extrapolation principle requires that      
     itself satisfies the stated axioms, and is the 

smallest set that does so.  

Fortunately, the axiomatic foundation can be established using the parallel set of axioms (B1) 

– (B4), as shown by KKM and KMK. The minimum extrapolation theorems by KKM and KMK 

can be formally summarized as follows:   

 

Theorem 1. Production possibility set      
    is the intersection of all sets     

    that satisfy the 

envelopment (E1), axioms (B1) and (B2), the RTS axioms ((B3), (B4), (B5), or none) corresponding 

to the specified returns to scale.  

 

Note that axioms (B1) and (B2) could be relaxed in the same way as in the standard DEA 

technology. If the inequality constraints for inputs and outputs are replaced by equality constraints, 

this amounts to relaxing axiom (B1). Similarly, if intensity weights    are restricted to be binary 

integers, the convexity axiom (A2) is relaxed. We emphasize the direct correspondence between the 

axioms and the mathematical formulations of alternative DEA technologies.   

In addition to the settings where all inputs and outputs are either continuous or integer valued, 

in many applications of IDEA some of the input-output variables are integer valued while others 

can be meaningfully approximated as continuous variables. Following LV, KKM, and KMK, this 

case will be henceforth referred to as the hybrid integer DEA (HIDEA). In general, we can partition 

the set of input variables as         and the set of output variables as        , where 

subsets    and    contain the integer valued inputs and outputs, respectively, whereas subsets     

and     include the real valued inputs and outputs. Without loss of generality, subsets    and    , as 

well as     and    , are assumed to be mutually disjoint, and |  |      and |  |     . 

Applying these notations, we can state any non-negative input and output vectors (   ) as  
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  (   

   ) ,   (
  

   ).  

 

In the hybrid setting, we can impose type-A axioms for the continuous inputs and outputs 

included in     and    , while type-B axioms are used for integer-valued inputs and outputs 

included in    and   . In practice, we can formulate the HIDEA technology as  

 

      
     {(   

     
  

   )   

subject to 

(     )    
   

; 

(   

   )  ∑ (
  
 

  
  )  

 
    ; 

(
  

   )  ∑ (
  
 

  
  )    

 
   ; 

      }, 

 

where      are specified for VRS, NIRS, NRDS, or CRS as noted above. Note that the same set of 

intensity weights    are used for both integer-valued and continuous input-output variables. 

However, the constraint (     )    
   

 only applies to the subset of integer-valued input-output 

variables.  

The next theorem generalizes the axiomatic foundation established in Theorem 1 to this 

hybrid setting. 

 

Theorem 2. Production possibility set       
    is the intersection of all sets S that satisfy the 

envelopment (E1), axioms (A1) and (A2) for the subsets (       ), axioms (B1) and (B2) for the 

subsets (     ), and the RTS axioms ((A3), (A4), (A5), or none for the subsets (       ), and (B3), 

(B4), (B5), or none for for the subsets (     )) corresponding to the specified returns to scale.  

 

In addition to these symmetric cases where the real-valued and integer-valued variables 

exhibit the same type of returns to scale, it could be interesting to allow the returns to scale differ 

for the real-valued and integer-valued variables, in the spirit of the hybrid returns to scale 
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technology by Podinovski (2004). For example, in some applications it might be reasonable to 

assume the real-valued variables are subject to VRS, while the integer-valued variables exhibit 

CRS. Extending the HIDEA problem to hybrid returns to scale specifications falls beyond the scope 

of the present paper, and is left as an interesting topic for future research. 

 

4. Efficiency measures and distance functions 

4.1 Modified Farrell input efficiency measure 

Having introduced the IDEA and HIDEA technologies, we will next examine the measurement of 

efficiency as a distance from the observed input-output vector of the evaluated DMU to the efficient 

boundary of the benchmark technology. Before proceeding, we must stress that the standard 

efficiency measures (including the radial Farrell input and output measures, the additive Pareto-

Koopmans efficiency measures, and the directional distance functions) all implicitly assume 

continuous, real-valued inputs and outputs. Consider, for example, the classic Farrell input 

efficiency measure, defined as 

     (     )     { |(      )   }, 

 

where vector (     ) is the input-output vector of the DMU under evaluation (which can be one of 

the observed DMUs or a hypothetical unit of interest). Value   = 1 indicates full efficiency, and 

values     imply the evaluated DMU is inefficient:      (   ) indicates the degree of 

inefficiency. Unfortunately, applying the standard Farrell measure directly to       is likely 

problematic because       is essentially a discrete set of disconnected points. Hence, applying the 

standard Farrell measure as such can yield very strange, counterintuitive results. For example, it is 

possible that      (     )    for input-output vector (     ) that is strictly dominated by 

another point in      .  

To avoid complications due the discrete nature of IDEA and HIDEA technologies, KKM 

propose to modify the Farrell input efficiency measure as: 

 

      (     )     {    | ( ̃  ̃)     ̃    
        ̃     ̃}. 

 

This modified Farrell measure gauges radial distance to the monotonic hull of the benchmark 

technology, requiring that the reference point (      ) must be dominated by a feasible input-

output vector ( ̃  ̃) which has integer-valued inputs for the subset   . For the sake of completeness, 
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note that we could also add a requirement that  ̃    
 

, but this would be completely redundant in 

the case of input-oriented efficiency measure.  

The modified input efficiency measure        preserves the usual interpretation of the 

Farrell measure as a downward scaling potential in inputs at the given output level. It guarantees 

that DMUs assigned the efficiency score one are weakly efficient in the Pareto-Koopmans sense. 

Unfortunately, the original papers by LV suggested MILP formulations for computing the radial 

input- and output-oriented efficiency measures without explicit recognition of the need to modify 

the efficiency metric. Therefore, it is not immediately clear what LV intend to measure in the first 

place, and how the constraints of LV’s MILP formulations should be interpreted: do the inequality 

constraints of LV represent the disposability axioms of the benchmark technology or the 

measurement of distance to the monotonic hull of the benchmark technology? This appears to be 

the source of confusion for KSM, who similarly overlook the modification of the Farrell efficiency 

measured clearly stated in both KKM and KMK articles. We return to this point in more detail in 

the numerical examples considered below.    

 

4.2 MILP formulation    

In the case of the general        benchmark technology, the modified input efficiency measure 

       can be computed by solving the following MILP problem: 

 

      (     )          ̃        

subject to   

{

∑      
 
     ̃          

 ̃               

 ̃             
  

∑      
 
                  , 

 ∑      
 
               , 

      .     

 

To clarify some key issues that continue to cause confusion in the IDEA literature, it is worth to 

examine the interpretation and the rationale of the constraints of the MILP problem in detail, 

highlighting the direct connections between the axioms introduced in Section 2 and their 

implementation in the MILP formulation.  
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For clarity, the constraints of the above MILP problem have been stated as inequalities, and 

the non-radial slacks have been omitted. In contrast, KKM and KMK state their MILP formulations 

using equality constraints and slacks.
10

 This is one potential source of confusion prevailing in the 

IDEA literature. In particular, KSM (2012b) have criticized the MILP formulations by KKM and 

KMK for producing sub-optimal slacks. We find this critique misplaced because KKM and KMK 

were mainly interested in measuring efficiency using the radial metric       : the slacks were used 

merely as instruments for imposing the free disposability and natural disposability axioms (A1), 

(B1), and for measuring the distance to the monotonic hull of the benchmark technology. In the case 

of continuous variables, we see the non-radial slacks merely as artifacts of the DEA technology, 

which do not necessarily have any relation to the underlying production technology: even if the true 

technology is smooth, the piece-wise linear DEA technology will have slacks. The presence of 

slacks does not imply the true technology is non-smooth. In the case of IDEA technology, the non-

radial slacks may be meaningful. However, the slacks determined by the MILP problem are not 

necessarily unique, and not even Pareto-Koopmans efficient, as will be demonstrated below by 

means of numerical examples. For these reasons, we do not consider the non-radial slacks to be 

particularly interesting or useful.  

To further clarify the MILP formulation, we use curly bracket { to identify the constraints 

associated with integer-valued inputs (subset I
I
). The first constraint introduces a vector of integer-

valued variables  ̃    
 

. Variables  ̃ represent the integer-valued benchmark introduced in the 

definition of       : note that the elements of  ̃ are optimized subject to the first and the second 

constraint of the MILP problem. The first constraint states that the convex combination of the 

observed DMUs must dominate the benchmark  ̃. Note that the inequality sign stated in the first 

constraint imposes the natural disposability axiom (B1). If the first constraint is stated as the strict 

equality, then we effectively relax axiom (B1).   

The second constraint states that the benchmark  ̃ must dominate the radial contraction of the 

evaluated DMU    . Note that the inequality sign of the constraint is due to the fact that        is 

defined as a distance to the monotonic hull of the benchmark technology (i.e., the HIDEA 

technology in this case). Relaxing the natural disposability axiom (B1) does not affect this 

inequality constraint because the inequality represents a property of the efficiency metric, and not 

the benchmark technology.  

                                                 
10

 In their original manuscript, KKM stated their MILP formulation using inequality constraints. They later introduced 

slacks by request of a reviewer.  
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The third constraint states that the benchmark  ̃ must be integer-valued for the subset of 

inputs   . The fourth constraint is the standard envelopment constraint for outputs. Note that the 

distinction of continuous versus integer-valued outputs is redundant for the input-oriented 

efficiency index that keeps the output vector    as constant. Finally, the optional returns to scale 

constraints are expressed using the generic domain      introduced above.  

It is worth to note that our MILP formulation stated above differs from that of LV (2006) in 

one critical respect. In the original MILP formulation by LV, the envelopment constraint for the 

integer-valued inputs is stated as a strict inequality: ∑      
 
     ̃ . KKM state that, as a result of 

this equality constraint, “the intensity weights    need not be optimal.” The detailed examination of 

the constraints of the MILP formulation discussed above allows us to pinpoint the axiomatic 

consequences of the LV and KKM formulations, revealing the source of the problem explicitly. 

Specifically, we noted above that the inequality sign in our first constraint imposes the natural 

disposability axiom (B1). By stating the first constraint as strict equality, the LV formulation 

effectively relaxes the natural disposability axiom for the integer-valued inputs. Therefore, the 

MILP implementation by LV (2006) is not consistent with the specification of their IDEA and 

HIDEA technologies.  

LV (2007) introduced the VRS formulation, where they correctly specify the envelopment 

constraint for the integer-valued inputs as an inequality ∑      
 
     ̃ , in contrast to their original 

CRS formulation in LV (2006). LV do not justify or explain where the inequality sign comes from 

in the VRS case, but instead they claim that “In the CRS model that distinction is not necessary and 

the integer DEA target is always equal to the linear combination of the existing DMU.” (LV, 2007, 

p. 15) This claim is obviously not true. As emphasized above, the inequality sign of the 

envelopment constraint for integer inputs is due to the natural disposability axiom, which LV seem 

to ignore in their statement quoted above. Obviously, the natural disposability axiom is completely 

unrelated to the RTS specification. The misleading and erroneous statement by LV may be one 

source of confusion. 

Another important difference between the VRS specifications of LV and KMK concerns the 

treatment of continuous inputs (i.e., the subset I
NI

). KKM apply the radial contraction by factor   to 

both integer-valued and continuous variables, whereas LV (2007) restrict the radial projection to the 

subset of integer-valued inputs, keeping continuous inputs at constant level. This is not a problem as 

such, it just implies a different orientation of efficiency measurement.
11

 A more problematic feature 

                                                 
11

 In most applications we can think of, it would seem more natural to treat integer-valued inputs as quasi-fixed factors, 

and project DMUs to the frontier in the direction of continuous inputs.  
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of the LV (2007) formulation is the use of strict equality constraints for the continuous inputs and 

outputs, specifically,  

 

∑      
 
                   

∑      
 
                

 

These constraints obviously do not allow for free disposability of the continuous inputs and outputs. 

However, LV (2007) do allow for free disposability of integer-valued inputs and outputs, which 

seems contradictory. Unfortunately, LV (2007) do not explicitly state the specific axioms imposed.  

Recently, KSM (2012, 2013a, 2013b) confuse the readership further by claiming that the 

MILP formulations by LV and KKM are equivalent in the CRS case and that the formulations of 

LV and KMK are equivalent in the VRS case. In light of the observations above, these claims are 

obviously not true.
12

 Indeed, detailed examination of the constraints of alternative MILP 

formulations presented in the literature clearly underlines the importance of stating the axioms 

explicitly and formulating the DEA problems rigorously, consistent with the maintained axioms.    

    

4.3 Numerical examples 

The following simple numerical example illustrates the problem in LV’s (2006) MILP formulation 

and the line of argument presented in LV (2007), which KSM (2012, 2013a, 2013b) fail to 

recognize. Consider a CRS technology with two inputs and one output, and assume the input-output 

vector (x1, x2, y) is integer-valued. Assume two DMUs with the following data: A = (5, 12, 3), and 

B = (10, 12, 2).  

Figure 1 illustrates the boundary of the IDEA technology in the three-dimensional space. The 

observed DMUs are indicated by black circles labeled as A and B. In this example, the efficient 

subset of the IDEA technology is characterized by DMU A and any virtual units obtained by 

applying axioms (B1), (B2), and (B5) or any combination thereof. DMU B lies in the interior of the 

IDEA technology, and is hence inefficient.  

Suppose we are interested in measuring efficiency of DMU B. The white circles in Figure 1 

indicate the benchmarks for DMU B, obtained by using the MILP formulations of KKM and LV, 

respectively, applying the radial input orientation and the CRS specification. Figure 1 indicates that 

                                                 
12

 An interested reader can easily verify the empirical results reported by KKM and KMK. For transparency, the data 

and the computational codes for GAMS and LINGO are freely available on the website: 

http://nomepre.net/index.php/integerdea. 

http://nomepre.net/index.php/integerdea
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the benchmarks are different. To better visualize the benchmarks, we next turn to the two-

dimensional diagram of the input isoquants presented in Figure 2. 

Figure 2 illustrates the input isoquants at output levels 1, 2, and 3, and the radial projection of 

the evaluated DMU B to the frontier. As in Figure 1, the benchmarks obtained with the KKM and 

LV formulations are indicated by white circles.  

 

 

 

Figure 1. Three-dimensional illustration of the IDEA technology considered in the numerical 

example. Observed DMUs A and B are indicated by black circles. The white circles indicate 

the benchmarks for DMU B obtained using the KKM and LV formulations.  
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Figure 2: Two-dimensional illustration of the numerical example. Three input isoquants L(1), 

L(2), and L(3) correspond to the output levels 1, 2, and 3, respectively. The line between point 

B and KKM indicates the radial projection of the evaluated DMU B.  

 

The KKM benchmark is obtained from DMU A using the stated axioms as follows. Firstly, 

we can use natural disposability axiom (B1) and add one unit of input 1 to DMU A, to obtain a 

feasible point A’ = (6, 12, 3). Secondly, we can use natural divisibity axiom (B5) to rescale point A’ 

downward by factor 2/3 to obtain the point A’’ = (4, 8, 2). Note that A’’ produces two units of 

output, similar to DMU B. Indeed, point A’’ provides a valid benchmark for DMU B. Contracting 

the input vector of DMU B in radial manner, we see that input 2 proves the limiting factor: the 

radial input efficiency of DMU B is   
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   (       )  

     

   
 

 

  
 

 

 
. 

 

Note that there remains non-radial slack in input 1: 
 

 
     

 

 
 > 4. In addition to the radial 

contraction, input 1 could be further decreased by  
 

 
  4 =  

 

 
 units. Note that this input slack is 

due to the fact that the efficiency metric        measures distance to the monotonic hull of the 

IDEA technology: it has nothing to do with the natural disposability axiom used for obtaining the 

benchmark point A’’. This is the reason why KKM introduce two types of slack variables, and in 

the MILP formulation of Section 4.2 we use two sets of inequality constraints to ensure that  

 

∑      
 
     ̃               .   

 

The essential problem of the LV formulation is that it does not include separate slacks for the 

natural disposability and for the monotonic efficiency metric. Hence, LV do not allow the use of 

natural disposability axiom (B1): we can only apply axioms (B2) and (B5) in this case. The 

benchmark of LV’s formulation can be constructed as follows. Firstly, use the natural divisibility 

axiom (B5) to rescale DMU B downward by factor 1/2 to obtain the point B’ = (5, 6, 1). Secondly, 

apply the axiom (B2) to form the convex combination of points A and B’ as  

 

B’’ = 
 

 
A + 

 

 
B’ = 

 

 
 (5, 12, 3) + 

 

 
(5, 6, 1) = (5, 9, 2). 

 

This convex combination provides the benchmark according to the MILP formulation of LV. Note 

we did not use natural disposability or non-radial slack until this point. Note further that the KKM 

benchmark A’’ dominates the LV benchmark B’’ in this example: (4, 8) < (5, 9). Contracting the 

input vector of DMU B in radial manner, input 2 is the limiting factor also in the LV formulation: 

the radial input efficiency of DMU B is   

 

     
   (       )  

     

   
 

 

  
 

 

 
       

   (       )  
 

 
. 

 

Besides the radial contraction, the LV formulation has non-radial slack in input 1, similar to the 

KKM case. This slack allows LV to project evaluated DMUs to the monotonic hull of the IDEA 
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technology. However, a single slack variable is insufficient for utilizing the natural disposability 

axiom. In the LV formulation, the input constraints become 

 

∑      
 
     ̃               .   

 

The strict inequality eliminates the use of the natural disposability axiom. 

Before proceeding to the extensions, it is worth to note that the optimal  ̃  identified by the 

KKM method need not be unique. Indeed, there may be multiple integer-valued  ̃  that fall within 

the interval characterized by the inequality constraints: 

 

∑      
 
     ̃               .   

 

To illustrate the non-uniqueness in terms of the previous numerical example, note that we could 

equally well add four units of input 1 to DMU A (rather than just one unit), to obtain a feasible 

point C’ = (9, 12, 3). Next, we can use natural divisibity axiom (B5) to rescale point C’ downward 

by factor 2/3 to obtain the point C’’ = (6, 8, 2). Although point A’’ considered above dominates C’’, 

point C’’ provides an equally valid reference point for assessing radial input efficiency of DMU B. 

Contracting the input vector of DMU B radially, input 2 remains the limiting factor, and the radial 

input efficiency of DMU B is 
 

 
 even if we use C’’ as the benchmark. However, the second non-

radial slack in input 1 is now  
 

 
 – 6 = 

 

 
. This example illustrates that the integer programming 

algorithm applied for solving the MILP problem may well return sub-optimal target points, as KSM 

(2013b) have noted. We must stress there is no guarantee that the optimal intensity weights, 

multiplier weights, or slacks are unique even in the standard DEA formulations. In the case of 

discrete inputs and outputs, it should be nothing surprising to find non-unique slacks and non-

unique targets. To conclude, we emphasize that the MILP formulations presented by KKM and 

KMK were developed for measuring radial input efficiency, and can only be guaranteed to serve 

that purpose. Since the non-radial slacks obtained as the optimal solution to the MILP problem are 

not necessarily unique, adjusting the radial projection for the non-radial slacks may result as sub-

optimal target points. We return to this issue in Section 5.3 below. 
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5. Alternative efficiency metrics 

The sound axiomatic foundation of IDEA technology based on the minimum extrapolation principle 

makes several extensions of the conventional DEA readily available to IDEA. LV (2007) consider 

several alternative efficiency metrics, including the input and output oriented radial Farrell 

measures, additive and range-adjusted slack based measures, and the Russell measure. Du et al. 

(2012) consider the additive super-efficiency measure in the context of DEA. In this section we 

review some alternative efficiency measures, starting from the radial output oriented efficiency 

measure, and proceeding to the general directional distance function. We complete this section with 

a critical review of additive and slack based measures, noting some problems in these approaches in 

the context of IDEA technology.  

 

5.1 Modified Farrell output efficiency measure and its implementation  

In Section 4 we restricted attention to the radial input-oriented efficiency measure by Farrell (1957), 

modified by KKM to the IDEA context. In this section we briefly extend the discussion to the radial 

output measure. 

Farrell’s output efficiency measure is defined as 

 

      (     )     { |(      )   }. 

 

Note that in this case   = 1 indicates full efficiency, and values     indicate that the evaluated 

DMU is inefficient (note that we can convert the output efficiency measures to the interval (0, 1] by 

using the inverse    ). To avoid complications due the discrete nature of IDEA and HIDEA 

technologies, we can modify the radial output efficiency measure as: 

 

       (     )     {    | ( ̃  ̃)     ̃    
       ̃      ̃}. 

 

This modified Farrell measure gauges radial distance to the monotonic hull of the benchmark 

technology, requiring that the reference point (      ) must be dominated by a feasible input-

output vector ( ̃  ̃) which has integer-valued inputs for the subset   .  

The modified output efficiency measure         has the usual interpretation of the radial 

expansion potential of the evaluated output vector at the given level of inputs. It guarantees that 

DMUs assigned the efficiency score one are weakly efficient in the Pareto-Koopmans sense.  
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In the case of the        benchmark technology, the modified output efficiency measure 

        can be computed by solving the following MILP problem: 

 

       (     )          ̃       

subject to   

{

∑      
 
     ̃          

 ̃               

 ̃             

  

∑      
 
                  , 

∑      
 
               , 

      .     

 

In this case, we indicate the constraints of the integer-valued outputs (subset O
I
) by curly bracket {. 

Note that it is unnecessary to introduce integer-valued input targets  ̃    
 

 because the inputs are 

held constant at their observed levels. This reduces computational complexity compared with the 

MILP formulation by LV (2007) because our formulation excludes p integer-valued model 

variables as redundant (here p is the number of input factors). Note further that we set two 

inequality constraints for the integer-valued outputs to ensure that  

 

∑      
 
     ̃               . 

 

The first inequality imposes the natural disposability axiom for the integer-valued outputs, whereas 

the latter inequality is due to the fact that we measure distance to the monotonic hull of the discrete 

HIDEA benchmark technology.  

 

5.2 Modified directional distance function and its implementation 

We next consider a modified version of the directional distance function (DDF) by Chambers et al. 

(1996, 1998). To our knowledge, this is the first application of DDF to the IDEA context.  

DDF allows us to project the observed DMUs to the frontier in non-radial manner, allowing 

for simultaneous contraction of inputs and expansion of outputs. DDF indicates the distance from a 

given input-output vector to the boundary of the benchmark technology in some pre-assigned 

direction (     )    
   . DDF can be formally defined as  
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   (           )     { |(             )   }. 

 

Note that in this case   = 0 indicates full efficiency, and values     indicate that the evaluated 

DMU is inefficient. Note further that DDF contains the radial input and output efficiency measures 

as its special cases. For example, setting (     )  (    ), we obtain 

 

   (           )            (     ). 

 

To avoid complications due the discrete nature of IDEA and HIDEA technologies, we can 

modify the original DDF as: 

 

    (           )    

   { | ( ̃  ̃)     ̃    
   ̃    

   (      )   ̃ (      )   ̃}. 

 

This modified DDF gauges directional distance to the monotonic hull of the benchmark technology, 

requiring that the reference point (             ) must be dominated by a feasible input-

output vector ( ̃  ̃) which has integer-valued inputs and outputs for the subsets    and   .  

In the case of the        benchmark technology, the modified DDF can be computed by 

solving the following MILP problem: 

 

    (           )          ̃  ̃        

subject to   

{

∑      
 
     ̃          

 ̃                   

 ̃             
  

{

∑      
 
     ̃          

 ̃                   

 ̃             

  

∑      
 
                      , 

∑      
 
                      . 

      .     
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In general, DDF requires that we introduce integer-valued targets for both inputs (i.e.,  ̃    
 

) and 

outputs ( ̃    
 

) because DDF can adjust all inputs and outputs simultaneously. However, if the 

direction vector (     )  contains any zero elements, we can harmlessly exclude the integer-valued 

targets for the corresponding inputs and outputs, and treat those inputs and outputs as fixed factors, 

similar to the treatment of outputs in the radial input efficiency measure considered in Section 4.2, 

and the treatment of inputs in the radial input efficiency measure considered in Section 5.1.  

 

5.3 Additive and slack based measures  

LV (2007) introduced the additive IDEA formulation, applying the Pareto-Koopmans measure by 

Charnes et al. (1985) to the IDEA technology. A slightly modified version of LV’s additive 

formulation can be presented as follows:   

 

            ̃  ̃  ∑   
 

      ∑   
 

            

subject to   

{

∑      
 
     ̃          

 ̃        
          

 ̃             
  

{

∑      
 
     ̃          

 ̃        
          

 ̃             

  

∑      
 
                 , 

∑      
 
                 . 

      .     

 

Following LV, our MILP formulation minimizes the sum of slacks in the integer-valued inputs and 

outputs (subsets O
I
 and I

I
, respectively), keeping the continuous inputs and outputs at constant level. 

We could easily introduce slacks to the continuous inputs and outputs as well (see Du et al., 2012). 

Our MILP formulation of the additive IDEA differs from that of LV (2007) in that we use 

inequality constraints for the continuous inputs and outputs (subsets O
NI

 and I
NI

, respectively), 

allowing for free disposability of these inputs and outputs. In contrast, LV do not allow for free 

disposability of continuous inputs and outputs, but they do implicitly assume free disposability of 

integer-valued inputs and outputs, which may seem confusing. 
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We noted at the end of Section 4 that the optimal solution of the KKM and KMK MILP 

formulations for computing the modified Farrell input efficiency may yield sub-optimal 

benchmarks. Specifically, the optimal integer-valued reference point  ̃ need not be unique, and it is 

possible that  ̃ is dominated by another feasible point. If one is interested in computing efficient 

benchmarks, one can first compute the radial or directional projection to the IDEA frontier using the 

MILP formulations presented in Sections 4, 5.1, or 5.3, and subsequently apply the additive MILP 

formulation presented in this section to maximize the sum of slacks. While the additive formulation 

ensures benchmarks that are efficient in the Pareto-Koopmans sense, a unique solution cannot be 

guaranteed. 

Consider a simple example of three DMUs that use a single integer-valued input x to produce 

a single integer-valued output y. Suppose the observed data of DMUs, presented as vectors (x,y) is 

the following: A = (2,1), B = (3,2), and C = (3,1). Note that A and B lie on the efficient boundary of 

the IDEA technology, whereas C is dominated by both A and B. Now, apply the additive IDEA 

formulation to assess efficiency of DMU C. The optimal value of the objective function is unique, 

equal to 1. However, neither the benchmark ( ̃  ̃) nor the slacks (     ) are unique. It is possible 

to identify DMU A as the benchmark (i.e., ( ̃  ̃) = (2,1)), which yields (     ) = (1,0). It is equally 

possible to identify DMU B as the benchmark (i.e., ( ̃  ̃) = (3,2)), which yields (     ) = (0,1). 

The MILP algorithm will arbitrarily identify one of these two alternatives to be presented as the 

optimal solution. While even standard DEA does not guarantee a unique optimum for the slacks, 

benchmarks, or multiplier weights, alternate optima are likely to occur in the context of integer-

valued inputs and outputs. Therefore, it is important to be aware of the fact that the optimal slacks 

need not be unique. It seems some of the critiques by KSM are based on misunderstanding this fact. 

The additive measure can be used for testing whether the evaluated DMU is on the Pareto-

Koopmans efficient frontier (i.e., ∑   
 

     + ∑   
 

    = 0) or not. However, the use of the additive 

measure for gauging efficiency is problematic. Non-uniqueness of the optimal slacks noted above is 

not the only problem. LV (2007) note that the interpretation of the additive measure as an efficiency 

index is meaningful only when the inputs and outputs are measured in the same units of 

measurements (e.g., in money), which is not usually the case. Indeed, an appealing feature of DEA 

is that inputs and outputs can be measured in different units without a need to convert them to 

money metric or other measure of relative values prior to the analysis. 

Several attempts to adjust the additive measure to different units of measurement have been 

presented in the DEA literature, most notably the range adjusted measure (RAM) by Cooper et al. 
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(1999) and the slack-based model (SBM) by Tone (2001). In RAM formulation, the objective 

function of the additive IDEA formulation is replaced by  

 

            ̃  ̃  ∑
  
 

  
     ∑

  
 

  
     , 

 

where Ri = maxj xij – minj xij is the observed range of input i, and Rr = maxj yrj – minj yrj is the 

observed range of output r, respectively. Many variants of SBM (Tone, 2001) are known in the 

DEA literature. In SBM we first compute the additive MILP formulation, or its range adjusted 

variant. The main idea of SBM is to aggregate thus obtained slacks to a single efficiency metric. 

Given the additive IDEA formulation presented above, the SBM measure can be stated as  

 

    
  

 

 
(∑

  
 

       )

  
 

 
(∑

  
 

       )

 . 

 

These examples consider slacks in the integer-valued inputs and outputs (similar to LV, 2007), but 

one could equally well include slacks to continuous inputs and outputs as well.  

In the context of IDEA technology, the fact that the optimal slacks (     ) are not 

necessarily unique can be problematic. Reconsider the numerical example with three DMUs A, B, 

and C, and consider SBM efficiency of DMU C. If the MILP algorithm identifies DMU A as the 

benchmark, then  

 

SBM = (1 – 1/3) / (1 + 0) = 2/3. 

 

However, the MILP algorithm can equally well identify DMU B as the benchmark, resulting with  

 

SBM = (1 – 0) / (1 + 1) = 1/2. 

 

This example illustrate that the SBM measure is not invariant or robust to alternate optimal of 

(     ), and indeed, there is no guarantee that the optimal slacks are unique. To avoid this 

problem, one could enumerate the SBM measure for all alternate optima, and choose the slacks that 

maximize or minimize the SBM measure. However, identifying all alternate optima of (     ) 

seems challenging if not computationally prohibitive in practice. To our knowledge, non-
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uniqueness of slacks and its potential problems have not been duly addressed in the DEA literature. 

In our view, non-uniqueness of slacks in DEA is one rational argument for why the radial or 

directional distance functions are preferred over the slack based approaches.  

We conclude this section by noting that the numerical examples used in this section for 

illustrating the non-uniqueness problem may seem overly simplistic. We deliberately used the 

simplest thinkable examples to illustrate. If non-uniqueness can occur and cause problems in a 

simple example, it would be foolish to assume the problem disappears as one proceeds to more 

complex examples or real applications.    

 

6. Stochastic noise 

In Section 2.4 we examined the envelopment condition (E1), noting that the best observed 

performance level may not be achievable by all DMUs due to unobserved heterogeneity of DMUs 

and their operating environments, technological and economic risks and uncertainty, omitted factors 

such as quality differences, errors in measurement and data processing, and other sources of noise. 

In this section we will briefly extend the StoNED framework introduced by Kuosmanen and 

Kortelainen (2012) to the present context of integer valued inputs and outputs. 

To maintain direct contact with the conventional stochastic frontier analysis (SFA) and 

StoNED, we consider the single-output case, and model the production technology using the 

production function f(x), which indicates the maximum output that can be produced with input 

vector x (for a general multi-output model, see Section 6.3 in KJS). Thus, the production possibility 

set T can be stated as  

 

  {(   )    
   |   ( ) }.  

 

We do not impose any particular functional form for f: we only assume the production possibility 

set T satisfies axiom (A1) for continuous inputs and (B1) for integer-valued inputs, axiom (B2), and 

possibly some RTS axioms. Inputs x can be integer-valued or continuous. The main challenge in 

this setting concerns the modeling integer-valued output     . To our knowledge, all previous 

studies on stochastic frontier estimation in the single-output case assume a continuous output 

variable.  

To model stochastic noise explicitly, the following data generating process will be assumed. 

The observed outputs of DMUs i = 1,…,n, denoted as   , are assumed to be generated from 

equation  
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    (  )       ,  

 

Where    is the input vector of DMU i (which may contain both discrete or continuous inputs), ui is 

a random inefficiency term, and vi is a random noise term. Random variables ui and vi are assumed 

to be independent of inputs x and of each other. More specific assumptions regarding ui and vi are 

the following. 

The inefficiency term ui is assumed to be a discrete, Poisson distributed random variable:
13

 

 

       (  ),  

 

where parameter     (  )     (  ) characterizes both the expected value and variance of the 

random inefficiency term (note:    should not be confused with the intensity weights of DEA). In 

this model, inefficiency    is always a non-negative integer, with a known probability mass function 

 

Pr(    )  
  
    

  
.  

 

Note that a DMU is fully efficient with probability Pr(    )   
   . 

 The noise term vi is specified as 

 

    ̃  ⌊  ⌋, 

 

where 

 

 ̃      (  ),  

 

and ⌊  ⌋ denotes the largest integer less than or equal to   . Parameter     ( ̃ )     ( ̃ ) 

characterizes both the expected value and variance of the random variable  ̃ , while ⌊  ⌋ is the 

mode of   ̃ . Note that while random variable  ̃  is always non-negative, the noise term    has zero 

                                                 
13

 The Poisson distribution is the most widely used discrete probability distribution in statistics. It can be derived from 

the probability of a given number of events occurring in a fixed interval of time and/or space when the events occur 

with a known average rate and independently of the time since the last event. Note that the Poisson distribution can be 

derived as a limiting case to the binomial distribution as the number of trials approaches to infinity and the expected 

number of successes is fixed. 
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mode and it can take either positive and negative values. As parameter    increases, the noise term 

   approaches to the normal distribution with zero mean and variance   . Note that in this model the 

impact of noise term has the lower bound  ⌊  ⌋.  

To estimate the frontier production function f and the parameters    and   , we can modify 

the stepwise StoNED estimator developed by Kuosmanen and Kortelainen (2012) as follows. In the 

first step, we estimate conditional mean output, which can be written as  

  

 (  |  )   (  )        ⌊  ⌋   (  ).  

 

Note that function g differs from f only by constant        ⌊  ⌋. Note further that even though 

the observed outputs    are assumed to be integer valued, the conditional mean  (  |  )  does not 

need to be an integer. Therefore, convex nonparametric least squares (CNLS) provides an unbiased 

and consistent estimator of function  (  ). Kuosmanen (2008) shows that the CNLS estimator can 

be computed by solving the following quadratic programming problem 

 

    ∑   
  

       

                

        
                ,  

     
         

               , 

                    

 

Where    are the CNLS residuals that represent the deviations of observed DMUs from the 

conditional mean function  (  ), and     are vectors of nonnegative slope coefficients that together 

with intercepts     characterize a supporting hyper plane of the unknown concave function to be 

estimated in point    .
14

 See KJM, Section 3, for a more detailed exploration of the CNLS 

formulation, its interpretation, and computation. 

Having solved the CNLS problem, we can estimate the conditional mean function  (  ) in 

the observed data points by 

 

   ̂(  )   ̂   ̂ 
   . 

 

                                                 
14

 The second set of constraints imposes convexity, applying the Afriat theorem (Afriat, 1972). The convexity axiom can 

be relaxed by replacing CNLS with isotonic regression, see Keshvari and Kuosmanen (2013), for details. 
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Further, we have the CNLS residuals   ̂ that are nonparametric estimators of 

 

 (      ⌊  ⌋)  (     )  ( ̃    )  (     )  ( ̃    )  (     ).  

 

To estimate the parameters    and   , we can utilize the CNLS residuals and the assumption of 

Poisson distributed inefficiency and noise.  

Before proceeding to step two, consider random variable   ̃   ̃    . Since   ̃ is a difference 

of two independent Poisson distributed random variables, it follows the Skellam distribution 

(Skellam, 1946). The mean, variance and skewness of the Skellam distributed random variable are 

related to the central moments of the distribution as follows. Define  

 

        , and 

  (     )/2. 

 

Using these notations, the variance and skewness of   ̃ can be stated as 

 

   (  ̃)    , 

    (  ̃)    (  )   . 

 

Note that the CNLS residuals are consistent estimators of   ̃ minus a constant. Therefore, we can 

use the sample variance and skewness of CNLS residuals as estimators of    (  ̃) and     (  ̃), to 

obtain estimates  ̂ and  ̂.  

Step 2 of the StoNED estimation is the following. Using the above moment equations, we 

obtain the following estimators for parameters    and   : 

 

 ̂   ̂  
 

 
 ̂  

 

 
(   (  )      (  )(   (  ))

   ) , 

 ̂   ̂  
 

 
 ̂   

 

 
(   (  )      (  )(   (  ))

   ), 

 

Where    (  ) and     (  ) are the sample variance and skewness of the CNLS residuals, 

respectively. Using the parameter estimates  ̂  and  ̂ , we can estimate the probability distributions 

of inefficiency and noise terms. Recall that expected value of inefficiency is simply   , and hence 

we can use  ̂  directly as the estimator of mean inefficiency. Note that in the stochastic frontier 

model     (  ) is generally expected to be negative. Therefore, negative skewness of residuals 
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increases the mean of the inefficiency term relative to that of the noise term in the Poisson model. If 

skewness is zero, then  ̂   ̂ . Positive skewness is also allowed: “wrong skewness” increases the 

mean of the noise term compared to that of the inefficiency term. This is an attractive feature of the 

Poisson model and the proposed method of moments estimator: wrong skewness does not cause 

major problems in this framework.
15

  

In step 3 we adjust the CNLS estimate of the conditional mean  ̂(  ) to estimate the frontier. 

Note that we need to shift the CNLS estimator upward by the mean inefficiency, but in this case, 

also the noise term may have non-zero mean (recall we assumed vi has zero mode, which does not 

imply zero mean). Further, we need to take into account that values of the production function must 

be integers. Using the equation of the conditional mean  (  |  ), the integer-valued StoNED 

frontier estimator can be stated as 

 

 ̂(  )  ⌊ ̂(  )   ̂   ̂  ⌊ ̂ ⌋⌋,  

  

where symbol ⌊ ⌋ is denotes the largest integer less than or equal to  . Function  ̂ can be proved to 

satisfy the axioms of natural convexity, natural disposability of output and integer-valued inputs, 

free disposability of continuous inputs, and any RTS axioms postulated. Function  ̂ does not 

necessarily envelope all observed DMUs, and hence the StoNED frontier will typically lie below 

the corresponding IDEA frontier. Note that enveloping noisy data will generally result as biased and 

inconsistent estimates. Provided that the assumed doubly-Poisson model of inefficiency and noise is 

correctly specified, the StoNED estimator  ̂ described above can be shown to be statistically 

consistent.  

To obtain DMU specific efficiency estimates, we must first recognize that the observed 

departures from the estimated frontier, that is,     ̂(  )  or     ̂(  ) , cannot be used directly for 

measuring efficiency. We can write the observed distance from the estimated frontier as  

 

    ̂(  )  ( (  )       )   ̂(  )  ( (  )   ̂(  ))        . 

 

Even if our estimate is precise, that is  (  )   ̂(  )   , the distance to the estimated frontier 

consists of two components: inefficiency and noise. To make DMU specific efficiency assessments, 

                                                 
15

 See, e.g., Simar and Wilson (2010) for a more detailed discussion about the wrong skewness problem in stochastic 

frontier estimation. 
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we need the conditional distribution of    for a given level of     ̂(  ), analogous to Jondrow et 

al. (1982).  

In the discrete case of two Poisson distributed random variables, deriving the conditional 

distribution of    for given     ̂(  ) is relatively straightforward. Firstly, note that we can 

calculate the unconditional probabilities    (    ) for each          , where k denotes the 

index of possible values of   , and K is the smallest integer that satisfies    (    )   ̈ for some 

pre-specified threshold probability  ̈  (e.g., we can set  ̈   10
6
). Secondly, we know that if     , 

then the noise term must be equal to        ̂(  )   . Hence, we can calculate the 

unconditional probabilities    (       ̂(  )   ) associated with each          . Note that 

if     ̂(  )     ⌊ ̂ ⌋, then the value of k falls below the minimum bound of noise   , and 

hence we need to set    (       ̂(  )   )    in such cases. 

Having calculated the unconditional probability distributions of    and    for          , 

we calculate the sum product 

 

   ∑    (    )     (       ̂(  )   )
    ̂(  ) ⌊ ̂ ⌋

   . 

 

The conditional distribution of    for given     ̂(  ) is then obtained as 

 

   (    |    ̂(  ))  
   (    )    (       ̂(  )  )

  
 . 

 

As a point estimator of   , one could use the mean of the conditional distribution 

 

  (  |    ̂(  ))  ∑    (    |    ̂(  ))
 
      , 

 

following the common practice in the SFA literature. Another possibility is to use the median of the 

conditional distribution. However, whichever point estimator might be used, it is important to keep 

in mind that    is essentially a random variable, and hence point estimation of a single realization of 

this random variable may be a pointless exercise. We emphasize that the knowledge of the 

conditional distribution of    at given     ̂(  ) provides means for more useful statistical 

inferences beyond computing point estimates for efficiency rankings. For example, one could apply 

the conditional distributions for assessing the probability that DMU i is more efficient than another 

DMU j, or the probability that a group of DMUs is more efficient than another group.     
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While the double-Poisson model and the associated StoNED estimator appear to be well 

suited for estimating IDEA technology under noise, one important caveat is worth noting. We 

assumed the observed outputs to be non-negative integers, and we would typically assume some 

observed    to be small, as large integers can be reasonably approximated as continuous variables. 

While took the lower bound      explicitly into account in the conditional distribution of   , we 

assumed parameters    and    to be constant at all input levels. This is not necessarily a realistic 

assumption as the range of possible output values typically depends on the input levels, and hence 

the variances represented by parameters    and    are not constant. Therefore, it would be 

important to take heteroscedasticity of inefficiency and noise explicitly into account by modeling 

these parameters explicitly as functions of inputs, that is,   ( ) and   ( ). However, we need to 

walk before we can run. We leave explicit modeling of heteroscedasticity as an interesting topic for 

future research, noting that there exists extensive econometric literature on this topic.
16

  

 

7. Conclusion and directions for future research 

The main insights of this chapter can be classified in three categories. First, a detailed examination 

of the axioms of integer DEA and the associated MILP formulations was presented in order to 

clarify some points of confusion prevailing in the literature. The key insight gained through this 

analysis is the intimate connection between the axioms and the formulation of the MILP problem. 

Without a proper understanding of explicitly stated axioms, the MILP formulation will likely 

produce erroneous or misleading results. For example, we demonstrated that LV’s MILP 

formulations fail to satisfy such axioms as free disposability of continuous inputs and outputs, and 

natural divisibility of discrete inputs and outputs. We illustrated through simple numerical examples 

that the MILP formulations by LV and KKM yield different results, in contrast to what KSM have 

recently claimed. The numerical examples also explain how the differences arise from the 

inconsistency of LV’s MILP formulations with their definition of IDEA technology. These 

observations underline the critical importance of the sound axiomatic foundation.  

Second, we examined alternative efficiency metrics available for integer DEA, 

complementing the KKM and KMK formulations for the modified radial input oriented measure 

with the modified versions of the radial output oriented measure and the directional distance 

function. We also critically discussed the additive efficiency measures, demonstrating by simple 

numerical examples that the optimal slacks are not necessarily unique. The non-uniqueness of 

                                                 
16

 KJM, Section 8, discusses some of this literature in the context of StoNED estimation. 
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slacks can be particularly problematic for the slack based measures of efficiency in the context of 

integer DEA.   

Third, we introduced a new model of IDEA technology in the single output setting under 

stochastic noise. Modeling both inefficiency and noise as Poisson distributed random variables, we 

developed the first extension of the StoNED method to the discrete setting. We developed the 

method of moments estimator for identifying the parameters of the double-Poisson model, and 

discussed how the conditional distribution of inefficiency at the given distance from the estimated 

frontier can be computed and applied for statistical inferences.  

In conclusion, we hope that this chapter helps to clarify some issues that have caused 

confusion, but also identify some interesting avenues for future research. The basic axioms of DEA 

are already well understood in the context of IDEA, but there are other axioms such as weak 

disposability (e.g., Kuosmanen, 2005) and selective proportionality (Podinovski, 2004) that deserve 

to be examined in the context of IDEA technology. For real applications, probabilistic modeling of 

noisy data appears to be the main challenge. In this chapter we presented the first attempt to 

modeling stochastic noise in the discrete setting assuming Poisson distributed noise. Further work is 

obviously needed to operationalize these ideas to be applicable to real applications. For example, 

the truncated distribution of observed outputs above zero and the associated heteroskedasticity 

deserve to be addressed explicitly.    
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Appendix: Proofs of theorems and lemmas 

 

Lemma 1:  Assume Axiom (B2) is satisfied. Then for any given (   ) (     )   , if there exists a 

real valued   such that ( ̃  ̃)   (   )  (   )(     )   , then there exist integers     

  
   ,    , such that  

      .  

 

Proof.  

We can write ( ̃  ̃) equivalently as ( ̃  ̃)  (     )   (         ). The first term (     ) is 

an integer-valued vector by assumption, and the second term is the product of another vector of 

integers (         ) and multiplier  . Since ( ̃  ̃)    implies ( ̃  ̃)    
   , then obviously   

cannot be an irrational number. Therefore, there must exist integers       
   ,    , such that  

      .  

 

Lemma 2: For any given (   )   , (   )  (   ), if there exists a real valued   such that 

(     )   , then there exist integers       
   ,    , such that  

      .  

 

Proof.  

Analogous to Proof of Theorem 1, we note that (   )    implies (   )    
   . For any (   )  

(   ), it is clear that multiplier   clearly cannot be an irrational number.  

 

 

Lemma 3: If the axioms (B2) Natural convexity and (B5) Natural radial rescaling are satisfied, 

then the axioms of (B3) Natural divisibility and (A6) Additivity must also hold. Conversely, if 

axioms (B3) and (A6) are satisfied, then axioms (B2) and (B5) must also hold. In other words, 

these two pairs of axioms are equivalent in the following sense:       

[(B2) and (B5)] ⇔ [(B3) and (A6)]  

Proof. Follows directly from Theorem 1 in KKM and Theorem 4 in KMK. 

 

Theorem 1. Production possibility set      
    is the intersection of all sets     

    that satisfy the 

envelopment condition (E1), the axioms (B1) and (B2), the RTS axioms ((B3), (B4), (B5), or none) 

corresponding to the specified returns to scale.  



41 

 

Proof. 

See KMK, Theorem 1 (VRS), Theorem 2 (NIRS), Theorem 3 (NDRS), and Theorem 4 (CRS), 

proved in Appendix A.  

 

Theorem 2. Production possibility set       
    is the intersection of all sets S that satisfy the 

envelopment (E1), axioms (A1) and (A2) for the subsets (       ), axioms (B1) and (B2) for the 

subsets (     ), and the RTS axioms ((A3), (A4), (A5), or none for the subsets (       ), and (B3), 

(B4), (B5), or none for for the subsets (     )) corresponding to the specified returns to scale.  

 

Proof. 

See KMK, Theorem 5 (VRS), Theorem 6 (NIRS), Theorem 7 (NDRS), and Theorem 8 (CRS), 

proved in Appendix A.  
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